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The eye and the camera

. Considered as an optical instrument, the eye has

certain similarities to 2 camera, though it would

* be truer o say that the camera has been copied

from the eye. The points of difference are worth
noting, the eye being superior on almost every
count. It is much more compact, has a wider field
of view, operates over a much more extensive
range of luminance levels and its resolving power
is close to the theoretical limit. Paradoxically — as
Helmholtz pointed out — the typical eye neverthe-
less exhibits aberrations and errors of centration
that an optical designer would consider unaccept-
able in a high-grade man-made system.

The aberrations of the eye are considered in
detail in Chapter 15 and so here we shall look at
the basic image-forming properties of the eye
from the standpoint of simple geometrical optics
valid for the paraxial region. Although you are
probably familiar with optical principles, an out-
line of the notation and methods used in this book
is given in the following pages. For a more
detailed treatment including proofs, the works
listed in the bibliography at the end of the book
are useful.

Laws of optical image formation
Sign convention

{1) Distances measured in the same direction as
that in which the incident light is travelling
are regarded as positive in sign; if in the
opposite direction, as negative.

(2) Object and image distances, focal lengths and
radii of curvature are measured from the lens,
mirror or surface concerned. The sign follows
from (1).

Diagrams are normally drawn so that the
incident light travels from left to right.

The vertical distance from the optical axis to
a point above it is taken as positive, and to a
point below it as negative.

For some purposes, a sign convention for
angles is needed. In accordance with
accepted mathematical convention, angles
measured in an anti-clockwise direction are
regarded as positive. The angle between a ray
and the optical axis is measured from the ray
to the axis.

Symbols

Standard symbols for the most important quanti-
ties are as follows:

Refractive index
Object distance
Image distance
First focal length
Second focal length
Radius of curvature
Object height
Image height

E e N

The presence of a dash (or ‘prime’} shows at
once that the symbol refers to a quantity after
refraction or reflection, the same symbol un-
dashed denoting the corresponding quantity be-
fore refraction or reflection.
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To denote the reciprocal of a distance, the
corresponding capital letter is used. Thus L = 1/¢,
R = 1/r and so on.

Letters used as symbols denoting a quantity are
normally printed in italic type. On the other
hand, letters in Roman capitals denote geometric-
al points. This helps to distinguish between F (the
power of a lens or surface) and F (the first
principal focus).

Subscript numerals are helpful in identifying
one of a series of successive refractions or reflec-
tions. For example %3 denotes the image height
after the second refraction or reflection.

‘Real’ and “virtual’

When refraction or reflection takes place at two or
more surfaces in succession, the image formed at
the first, whatever its nature, becomes the objeet
for the next. This gives rise to the possibility of
‘virtual’ objects as well as virtual images. Real
and virtual types of object may give rise to either
type of image.

Definitions

(1) A real object is one from which incident rays
diverge.

(2) A virtual object is one towards which incident
rays are converging as the result of a previous
refraction or reflection.

(3) A real image is one towards which refracted
or reflected rays converge and is therefore
capable of being received on a screen.

(4) A virtual image is one from which refracted
or reflected rays appear to emanate.

Refraction at a spherical surface

Let A be the vertex and C the centre of curvature
of a spherical surface, a line through A and C
being taken as the ‘axis’ (Figure 2.1).

If the surface is converging (for example, con-

vex, air to glass) the first principal focus F is the
real point on the axis giving rise to an image at
infinity, the refracted ray being parallel to the
axis. The second principal focus F' is the real
image point on the axis corresponding to an
object point at infinity, the incident rays being
paralle] to the axis.

The same definitions apply to a diverging
surface, except that in this case F is a virtual
object point and F' a virtual image point {Figure
2.2).

In both cases, the distance AF is the first focal
length fand AF' the second focal length f'.

Let B be an axial object point giving rise to the
image point B’ (Figure 2.3). Then, in all possible
cases,
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Figure 2.1. Principal foci F and F' of a converging spherical
refracting surface.
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Figure 2.2. Principal foci F and F’ of a diverging spherical
refracting surface.
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Figure 2.3. Refraction at a converging spherical surface.
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7' = refractive index of second medium
and
n' n n—n
—_ = =+ 2.1
£ £ r (2.1)

For an object at infinity, /€ = G and € = f".
Simalarly, for an image at infinity 2/’ = 0 and
£ = f. Henee

(2.2)

Power and vergence

For a spherical refracting surface, the power Fis
given by the relationship

L === -nR (23
I I - { (2.3)
where the curvature R is the reciprocal of the
radius of curvature in metres. The unit of curva-
ture is the reciprocal metre {m™'). From equation
(2.3) the surface power is seen to be proportional
to the reciprocal of the focal lengths. The unit of
focal power is the dioptre (D), the focal lengths
being expressed in metres for this purpose.

The term ‘reduced distance’ denotes a distance
{or thickness of material) traversed by a pencil of
rays, divided by the refractive index of the given
medium. On this basis, the reciprocal of a re-
duced object or image distance, such as »'/¢’ in
equation {2.1), is traditionally called the ‘reduced
vergence’. For brevity, however, we shall omit the
word ‘reduced’ from this term. In this work,
vergence will be used to denote the reciprocal of
an object or image distance (in metres} multiplied
by the refractive index of the corresponding
medium.* Like focal power, its unit is the dioptre.
Accordingly

Object vergence L = a/€  (in metres)
Image vergence L' = n'/€’ (in metres)

* The term vergence has traditionally been used as a
syoonym for wavefront curvature, the unit of which is the
retiprocal metre, not the diopire.

Laws of eptical image formation I

Equation (2.1) can now be re-written in the more
convenient form

L'=L+F (2.4)

in which all quantities are in dioptres.

It is a fundamental rule that a positive value of
L or L' always denotes convergence, while a
negative value always denotes divergence.

Unless otherwise stated, all distances in aigeb-
raic formulae throughout this book should be
taken to be in metres. If numerical values in
millimetres are substituted in such expressions, a
compensating factor of 1000 must be introduced.

The thin lens

A thin lens in air has two principal foci F and F’
and two focal lengths fand f7, defined exactly as
for a spherical refracting surface. In this case,
however, the power F of the lens is given by

F=1f = ~1f (2.5)

again in dioptres if /' and fare in mertres.
The conjugate focus relationship (2.4) applies
equally to a thin lens in air.

Reflection

When light is reflected by a mirror {Figure 2.4)
whether plane or spherical, there is a reversal of
direction which upsets the usual correspondence
between the signs of €' and L'. The same applies
to the focal length of a mirror since the focal
length is also an image distance. Consequently,
for reflection only we must put (assuming the
mirror is in air)
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Figure 2.4. Sign convention for reflection.
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L o= -1, € = -1L (26)
and
F = —1p =22, S = =l/F (2.7)

r

There is, however, no change in the rela-
tionship L = 1/€.

The conjugate focus relationship for reflection
then assumes the familiar form

L' =L+F

Theoretically, reflection obeys the same laws as
refraction if —n is substituted for n'.

Unequifocal systems

The eye is an example of an unequifocal optical
system, one in which the first and last media have
different refractive indices. In general, such
systems have six cardinal points {Figure 2.5) as
follows:

(1} F and F’, the first and sccond principal foci,
defined exactly as for a single refracting
surface,

(2) P and P’, the first and second principal
points.

(3) N and N’, the first and second nodal points.

The cardinal points are always symmetrically
positioned such that PP’ = NN’ and FP = N'F’.

The system as a whole has an ‘equivalent
power’ F such that

Ny +1 —n
F = === — (2.8)
S S
where 7 = P'F’, f= PF, n; = refractive index of
first medium and n;,; = refractive index of last

medium, the system having & surfaces,

If the object distance € is measured from P and
the image distance €' is measured from P’, the
conjugate focus relationship again takes the form

L'=L+F
where L = n;/€ and L' = n, /€.

Let a ray from an extra-axial object point Q be
directed towards P, making an angle u with the
optical axis (Figure 2.6). The corresponding
emergent ray will appear to have passed through
P’ making an angle ¥’ with the optical axis such
that

Ht+1u’ = mu (Qg)

N ) f—
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€ —
Figure 2.5. The cardinal points and conjugate foci ofan
unequifocal refracting system.
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Figure 2.6, Imagc construction for an optical system using
the principal and nodal points.

Let another ray from () be directed towards the
first nodal point N. The corresponding emergent
ray will appear to have passed through the second
nodal point N’ without undergoing a change of
direction. As indicated in Figure 2.6, these two
pairs of rays can be used to construct the image
B'Q)’ of an object BQ).

The properties of the two principal foci F and
I’ can also be used for this purpose, as shown in
Figure 2.5,

Transverse magnification

The expression
m= h/k = L/L {2.10)

in which m denotes the transverse magnification,
applies equally to refraction and reflection at a
single surface, as well as to thin lenses and optical
systems. Because this vergence formula for
magnification is so general, its use is preferable to
the alternative forms, in which vergence is
expressed in terms of object and image distances.

Effectivity

Let a pencil of rays (Figure 2.7) be travelling in a
medium of refractive index n and let the distance
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Figure 2.7, Effectivity: (a) converging bundle, (b) diverging

lbundle.

to the origin (or irom the focus) of the pencil be €,
measured at a specific point O. After travelling a
distance d metres from O to another specified

| point X, the wavefront is at a distance €, from its
| origin or focus. Hence,

6, = €,—d
and
L o=t __® _ n
x T e, T 6-d Ly -d
e Lo
= 1= L (2.11)

This expresses a general effectivity rela-

| ionship, ‘effectivity’ denoting a change of verg-
-| ence as light passes from one surface or reference

point to another.
If d is relatively smalil, the above expression can

.| be expanded by the binomial theorem to give the
| useful approximation

L, = Lo(l +;—1L°+...)

~ L°+§.Lg+... (2.12)

‘The quantity d/n is an example of a reduced

distance.

Refractive index

The refractive index of a transparent medium
varies with wavelength, and, to a lesser extent,
with temperature. Unless the context indicates
otherwise, the term should be understood as an
abbreviation for ‘mean refractive index’, namely,
the value for a selected wavelength in the bright-
est part of the spectrum. The d-line of the helium

spectrum (A = J0/.00mM) 15 OILCTL CHOsth UL LTS
purpose. Measurements are normally made at a

temperature in the neighbourhood of 18 to 20°C.

Angles and prism power

Throughout the text, angles will be expressed in

radians, degrees, or prism dioptres (symbol A).

This last measure, which is of great convenience

in ophthalmic optics, was introduced in 1890 by

C. F. Prentice (but not given this name by him).
If « is any angle less than 90°, then

vin A = 100 tan «
Thus, in Figure 2.6
u = 100(BQ/BP) A

A disadvantage of this system is that the tan-
gent of an angle does not increase in proportion to
the angle itself when other than small values are
concerned. For example, 20 A is equivalent to
tan™' 0.20 or 11.31°, whereas 40 A is equivalent to
tan™' 0.40 or 21.80°.

For small angles, the formula
4 = TA

{2.13)

(2.14)

is an easily remembered and useful approxima-
tion.

It also follows from equation (2.13) that for
small values the prism dioptre is equivalent to
one-hundredth of a radian, since both the sine
and the tangent of a small angle are very nearly
equal o the angle itself in radian measure.

In the ophthalmic world, the prism dioptre is
the accepted unit of prismatic pewer and devia-
tion. According to the currrent British Standard*
for ophthalmic trial case lenses, prisms are to be
numbered according to the deviation {in A)
undergone by a ray of wavelength 587.6 nm inci-
dent normally at one surface.

The cornea

With this introduction we can now study the
various components of the eye’s optical system,
first in sequence and then the system as a whole,

* BS 3162: ‘Ophthalmic Trial Case Lenses’.




The cornea (Figure 2.8) is a highly transparent
structure of meniscus form, approximately 12 mm
in diameter and slightly smalier vertically than
horizontally. The centre thickness is usually be-
tween 0.5 and 0.6 mm.

A thin layer of lacrimal fluid normally covers
the anterior surface but it is too thin to affect the
power appreciably and may be ignored in this
context.

Alr

Aqueous {n, = 1.336)
{ry = 1.000)

n, =1.376

Figure 2.8. Profile of the human cornea (1o scale): average
values as adopted in Gullstrand’s schematic eye.

To a first approximation both surfaces may be
regarded as spherical, the radii of curvature
having values in the neighbourhood of +7.7 mm
{anterior) and +6.8 mm (posterior).*

The refractive index of the corneal substance
may be taken as 1.376 and that of the aqueous
humour, in contact with the back surface of the
cornea, as 1.336.* By applying equation (2.3),
the two surface powers of the cornea may be
found as follows:

(1} Anterior surface

_ 1000(1.376 — 1)
+ 7.7

+4883D

Power F,

{2) Posterior surface

1000 (1.336 — 1.376)
+ 638

= —=5.88D

The power of the cornea as a whole is therefore
about +43 D, over two-thirds of the total power of
the eye.

Power F, =

* The values assumed by Gullstrand in his schematic eye.

When the eyes are unprotected under water,
the anterior surface of the cornea has its power
greatly reduced, the retinal image then becoming
inordinately blurred.

The anterior chamber

‘The anterior chamber is the cavity lying behind
the cornea and in front of the iris and crystalline
lens. It is filled with a colourless liquid aptly
termed the aqueous humour since its water con-
tent is 98%.

The depth of the anterior chamber, measured
along the eye’s optical axis, is strictly the distance
from the posterior vertex of the cornca to the
anterior surface of the crystalline, but the term as
sometimes used includes the corneal thickness.
Excluding this latter, an average valuc would be
about 3.0 mm.

From an optical point of view, the depth of the
anterior chamber is important inasmuch as it
affects the total power of the eye’s optical system.
If all other elements remained unchanged, a
reduction of 1 mm in the depth of the anterior
chamber {through a forward shift of the crystal-
line) would increase the eye’s total power by
about 1.4 D. The reverse effect would result from
a shift in the opposite direction.

The iris and pupil

The amount of light admitted to the eye is

regulated by the pupil, an approximately circular

opening in the iris. :
In normal conditions the pupils react to:

(1) A change in luminance—the ‘direct’ reflex

(2) A change in luminance applied to one eye
only, also producing a ‘consensual’ reflex in
the fellow eye,

(3) Near fixation, which is accompanied by
pupillary contraction.

Failure or anomaly of one or more of these
reflexes may be an important pointer to some
underlying disorder.

The pupil size decreases with age at zn
approximately uniform rate which does, however,
tend to slow down in later life. Largely because of
differences in techniques of measurement, there is
only a limited measure of agreement between
various published studies. The following dia-
meters can be taken as typical. For the eye in total
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J9mm at age 80. For the light-adapted eye,
,‘ g mm at age 10, 40mm at age 45, and 3.4 mm
at age 80.

|| Pupil size can be affected by a number of
externa! or secondary agencies such as drugs,
otions, and sudden changes in the state of
ind.

The crystalline lens

The crystalline lens serves the double purpose of
Supplying the balance of the eye’s refractive pow-

ar and providing a mechanism for focusing at

ifferent distances. This latter faculty is called
‘dccommodation.

| Both anatomically and optically, the lens is a
highly complex structure, composed of layers of
fibres laid down in an essentially radial pattern
:that is regular enough to allow a symmetrical
diffraction hale to be formed {se¢ Chapter 22).
“The lens continues to grow in bulk throughout life
E: the formation of fresh layers of fibres on the
: 1 terior. As part of the normal process of ageing it

.js susceptible to various changes impairing its

| . g -
flexibility and transparency. Its centre thickness
s thereby increased, while the radii of curvature

.nay become longer.

The lens substance is enclosed in a highly

‘elastic capsule. A structure of suspensory liga-
iments, called the zonule of Zinn, stretches from
'the periphery of the capsule to the surrounding
_ciliary body, holding the lens in position and
. ontrolling the curvature of its surfaces through
variations in tension produced by the action of the
“lciliary muscle.

"The lens has a diameter of approximately 9mm
hnd is biconvex in form, the radius of its anterior

‘kurface being about 1.7 times that of its posterior
"Lurface. When the lens ig in its unaccommodated

tate, the centre thickness has traditionally been

: r:aken as 3.6 mm, a figure appropriate to a young

dult. As accommodation is brought into play,
oth surfaces, but especially the anterior, assume a
ore steeply curved form. The centre thickness
hus increases and the vertex of the anterior surface
oves forward, reducing the depth of the anterior

diameter. The profiles of a typical crystalline in
lits relaxed and fully accommodated states are
‘lshown superimposed in Figure 2.9 which has been
‘ldrawn to scale. The diagram also indicates the
 [range of positions of the two centres of curvature.

Figure 2.9, Profiles of the human crystallinc lens in its relaxed
and fully accommodated states.

The back surface of the crystalline is in contact
with the vitreous humour, a transparent gel
which fills the posterior segment of the globe. The
vitreous humour has very nearly the same chemi-
cal composition as the aqueous and its refractive
index may be taken as the same, 1.336.

Because of its onion-like structure and the
compression exerted on the inncrmost layers, the
crystalline lens is far from being optically
homogeneous. A slit-lamp section reveals several
bands of discontinuity. In particular, it is possible
to distinguish a central bi-convex portion called
the nucleus, from the surrounding portion, called
the cortex. In the centre of the nucleus, the
refractive index reaches its maximum value be-
tween 1.40 and 1.41 but diminishes from the
centre outwards, being about 1.385 near the poles
and about 1.375 near the equator.

It may easily be deduced that a refractive index
gradient of this pattern, irrcspective of any sur-
face curvatures, must produce a converging effect
like a positive lens. Since the velacity of light in a
medium is inversely proportional to its refractive
index, an incident wavefront would become prog-
ressively less retarded from the centre outwards
and hence assume a convergent form. By way of
confirmation, Ivanoff (1953} crushed a rabbit
crystalline between parallel glass plates so that all
the surfaces including those of the nucleus were
rendered effectively plane. He then found that the
element so produced had a power in air of just
over +6D.

In his book on Physical Optics, Wood (1911)
described a simple method of making ‘pseudo
lenses’ from discs of gelatine enclosed between
glass plates. Immersion in water, which has a
lower refractive index, brings about a progressive
decline in index towards the periphery, producing
positive power up to about +12D. Both Ivanofl
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(following Bouasse) and Wood have given mathe-
matical analyses. _

As a result of this effect, the crystalline lens has
a greater power than would be the case if its
refractive index were uniform and had the highest
value actually found. In fact, it is necessary to
assume a fictitious refractive index of about 1.42
to bring the power of a homogeneous crystalline
lens up to a typical value in the neighbourhood of
+21 D.

The assumption that the lens surfaces are
spherical is for convenience only. Careful
observation reveals a marked degree of peripheral
flattening, especially of the anterior surface in its
accommodated state. Owing to this, and to the
peripheral flattening of the cornea, the eye’s
spherical aberration is kept within reasonable
limits, as we shall see in Chapter 15.

The retina

Anatomically an outgrowth of the brain, the
retina is a thin but enormously intricate structure,
its functions being much more extensive than was
originally supposed. It lines the posterior portion
of the globe, extending functionally up to the ore
serrala close to the ciliary bedy.

A surprising feature of the retina is that the
nerve fibres transmitting impulses from indi-
vidual or groups of retinal receptors travel across
its surface to their exit via the main trunk of the
optic nerve. The retina is also supplied with blood
vessels which are clearly visible through an
ophthalmoscope. Despite these obstructions to
the incident light, the efficiency of the system does
not appear to suffer. Under certain conditions,
however, retinal blood vessels may be seen entop-
tically by the shadows which they cast {se¢ Chap-
ter 22).

As described more fully in Chapter 3, the
ability of the retina to distinguish detail is not
uniform over its entire extent and reaches a
maximum in the macular region. This is an
approximately circular area of diameter about
1.5mm containing a smaller central area, the
fovea, populated exclusively by retinal cones. Itis
at the fovea that the eye attains its maximum
resolving power. When an object engages visual
attention, the twao eyes are instinctively turned so
that the image lies on each fovea.

From an optical point of view, the retina could
be described as the screen on which the image is

formed. It can be regarded as part of a concave
spherical surface with a radius of curvature in the
neighbourhood of —12mm.

In cameras and optical instruments generally,
it is convenient to have images formed on plane
surfaces, but the curvature of the retina has two
positive advantages. In the first place, the images
formed by optical systems tend to have curved
surfaces. The curvature of the retina is of the right
order from this point of view (se¢ Chapter 13).
Secondly, the steeply curved retina is able to
cover a much wider field of view than would
otherwise be possible.

The schematic eye
General properties

The schematic eye is a theoretical optical speci-
fication of an idealized eye, retaining average
dimensiens but omitting the complications (see
Chapter 12 for details). The equivalent power of
the eye as a whole is about +60 D and its cardinal
points are situated as shown in Figure 2.10. The
first and second principal points, P and P’, lie in
the anterior chamber at distances of about 1.6
and 1.9 mm respectively from the front surface of
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Figure 2.10. The cardinal points of the unaccommodated
schematic eve (to scale).

the cornea. The nodal points, N and N', are also
scparated by 0.3 mm and straddle the back sur-
face of the crystalline lens. The anterior focal
length PF is about —16.7mm and the posterior
focal length P'F" about +22.2mm.

The general relationships and ray paths indi-
cated in Figures 2.5 and 2.6 apply in every particu-

lar to the schematic eye.

Optical centration

In the schematic eye it is assumed that all the
refracting surfaces are co-axial, the cornea and
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crystalline having a common optical axis. The
optical centration of the typical human eye seems
to be defective, the crystalline lens being usually

“decentred and tilted with respect to the cornea.
' For this reason the eye does not possess a true
optical axis. However, as shown in Chapter 12,

the principal points of the cornea very nearly

. coincide as do those of the schematic crystalline

lens. Consequently, a line drawn as nearly as
possible through these two pairs of points would
represent a very close approximation to an optical
axis. The use of this term in relation ta the eye can
be justified on this basis. :

Entrance and exit pupils

If a pupil H] {Figure 2.11) with its centre at E, is
regarded as an object for the cornea, it will give

;| rise to a slightly magnified image with its centre

at E. This image is called the ‘entrance pupil’.

I Taken as an object for the crystalline lens, the

pupil HJ will give rise to another image, the ‘exit
pupil’, with its centre at E'.

1t follows from this that an incident pencil of
rays directed towards and filling the entrance
pupil would pass through the entire area of the
real pupil, after refraction by the cornea, and on
finally emerging into the vitreous body, would
appear to have been limited by the exit pupil.

Further, since a ray directed towards the axial
point E appears after refraction to have passed
through the axial point E’, these two points must

Real pupil

Entrance pupilj

|
| Exit pupil

Figure 2.11. The eye’s real pupil and its images, the entrance
and exit pupils.

be conjugate with respect to the system as a
whole.

On the basis of paraxial theory, it may be
shown that the entrance pupil is situated about
3mm behind the anterior surface of the cornea
and is about 13% larger than the real pupil. The
exit pupil lies closely behind the real pupil and is
only 3% larger.

Because E and E’ are conjugate points, another
relationship can be established. If an incident ray
directed towards E makes an angle u with the
optical axis, the conjugate refracted ray will make
an angle ' with the axis such that

u'/u = a constant for a given system

For the schematic eye the value of this constant
is about 0.82.

The visual axis

It might be reasonable to expect that the fovea
would be situated on the retina at its intersection
with the optical axis, a point termed the ‘posterior
pole’. In fact, the fovea is normally displaced
temporally and downwards from the expected
position. We are therefore led to postulate a
‘visual axis’ as distinct from the optical axis.

The visual axis has been taken by many writers
to be the imaginary line directed towards the first
nodal point N such that a parallel line through N*
would pass through the fovea. Apart from a slight
displacement due to the separation of the two
nodal points, as seen in Figure 2.6, an incident ray
travelling along this path would be otherwise
undeviated. Indeed, it could be assumed without
serious error that a mean position of the two
nodal points existed and the visual axis could be
defined as the line passing through this mean
position and the fovea.
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Figure 2.12. The optical and visual axes of the eye. Its second
principal focus F; is shown in a position indicating myopia.

L permetr
the vertigal plane, the visual

The field of vision

Monocular field of view

On the temporal side, where there are no obstruc-
tions, the field of vision extends through more
than 90° from the optical axis. The extreme ray
entering the eye from this side follows approx-
imately the path indicated in Figure 2.13. This
diagram also explains why the retina extends so
far forwards. It would not need to do so if light
could not reach it.

Extreme temporal ray path

Optical axis

Figure 2.13. The ray path at the limit of the eve's field of view.

The nose, brow and cheek limit the monocular
field of view in other directions, so that its shape is
irregular. A more detailed treatment of the visual
fields is given in Chapter 8.

One can note here a useful application of the
nodal points. If UN and VN in Figure 2.1{ are
incident rays enclosing an angle u, the conjugate
refracted rays will diverge as though from N', seill
including the same angle #. Suppose these rays
meet the retina at U’ and V'. Then, without
entering at all into questions of visual perception,
one may draw the following inference: a linear
extent of the retina subtending a known angle at
the second nodal point corresponds to an equal
argular extent of object space.

=)

Figure 2.14. Visual projection through the nodal point.

The fovea is about 0.3mm horizontally by
0.2mm vertically, subtending an angle at the
second nodal point of about 0.018 by 0.012
radians. At a typical reading distance of 350 mm,
this would cover an area of 6.3 X 4.2 mm, wide
enough for four letters of the size commonly used
for newsprint.

The blind spot

At the papilla, or optic disc, where the main trunk
of the optic nerve leaves the eye, there are no
retinal receptors. Consequently there is a corres- -
ponding ‘blind spot’ in the monocular field of
vision, first noted by Mariotte in 1668.

The optic dise measures about 2 mm vertically
by 1.5mm horizontally, subtending an angle of
some 7° by 5° at the second nodal point. This is
also the angular subtense of the blind region in
space. [t has been pointed out that ten full moons
placed side by side could disappear from view
within this space.

The centre of the optic disc lies nasalwards
from the fovea and slightly upwards from it. The
centre of the blind space is accordingly some 15°
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below it.
In Figure 2.15, the positions on the retina of the

i macula and optic disc are shown in relation to the
~ posterior pole. Dimensions given in degrees refer
. to the angular subtense at the second nodal point.

Undoubtedly the most surprising feature of the

blind spot is that normally its existence is never

noticed. Even if one eye is oceluded and the other

- views a strongly patterned or brightly coloured

expanse, the observer is still not conscious of any

- gap. Nevertheless, the blind spot can easily be
~mapped if suitable fixation and moving test-

objects are used.
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‘Figure 2.15. The refative sizes and positions of the macula
and optic disc. M’ denotes the fovea,

Although the blind areas of the right and left

.|'eyes do not overlap, Bridgman (1964} has pointed
. [out that in certain oblique directions of gaze part
| of the blind space of one eye is occluded by the
tinose from the field of vision of the other eye.

The reduced eye

{For most purposes, the optical imagery of the eye
.|can be adequately studied on the basis of a simple
i|analogue, called a ‘reduced eye’. As shown in

Figure 2.16 it consists of a single convex surface

|separating air from a medium of refractive index
+|n" similar to that of the vitreous body.

Since convenience and simplicity are basic to
the concept of a reduced eye, round figures are

lentircly appropriate. In Emsley’s version, the
.[power F. is taken as exactly +60 D and the value
‘Jof n" as 4/3. The two focal lengths, derived from
‘lequation (2.3) are

Hypotheticai
pupil
F o
A P N s

\ M

Fig;;re 2.16. The reduced eye and its hypothetical pupil.

j::

PF. = —1000/F. = —1000/+60
¢ = —16.67 mm
and 4000
7 = PF. = 1000n'/F, = —_
T n'/ 3 x 60
= +22.22 mm

In calculations it is often helpful to remember
that these two focal lengths are exactly —50/3 and
+200/9 mm respectively.

Equation (2.3) also gives the necessary radius
of curvature r of the refracting surface as

1000 (n' — 1) _ _1000
F, 3 x 60

= +5.56 mm
As é vulgar fraction, this is exactly 50/9 mm.

In the case of a single refracting surface, the
two-principal points coincide with each other and
with the vertex of the surface, denoted by P.
Similarly, the two nodal points coincide with each
other and with the centre of curvature of the
surface (now denoted by N). This is logicat, since
any ray directed toward this point meets the
surface normally and is hence undeviated.

The line passing through P and N constitutes
the optical axis, and the fovea, denoted by M’, is
assumed to be on this line which accordingly
becomes the visual axis as well.

If the unaccommodated eye is in focus for
distant objects it is said to be ‘emmetropic’. In
this event its second principal focus F' coincides
with M’.

For convenience, the pupil of the reduced eye is
considered to lie at the refracting surface, as
shown in Figure 2.16. The entrance and exit pupils
now coincide with this hypothetical pupil and the
principal point P fills the additional role of being
the-centre of the pupil.




Figure 2.17 sets in juxtaposition the reduced and
the Gullstrand—Emsley schematic eye with the
second principal focus F’ of each in coincidence.

23.89
22.04
1.85 b4 £l
f 1.556
Q
e —16.53 ——ml
—_14 98—
P
167
;
fe | 5,56
k—-—16.67 — e
22.22

Figure 2.17. Comparison of the Gullstrand—Emsley
=chematic eve with the simple reduced eye.

The principal point of the reduced eye is seen to
lie in between the two principal points of the
schematic eye. In round figures, the vertex of the
reduced eye lies 1%3mm behind that of the
schematic eye. Hence, if a spectacle lens is
assumed to be 12mm from the cornea, its dis-
tance from the reduced eye should be reckoned as
13%5 mm.

The retinal image
Algebraic treatment

The retinal image is inverted — a fact first prop-
ounded by Kepler in the early seventeenth cen-
tury and later demonstrated by Scheiner.

A distinction must be drawn between the retin-
al image, which may be sharp or blurred accord-
ing to circumstances, and the optical image. This
latter term denotes the sharp image formed by the
refracting system of the eye as though the retina
were absent. The actual formation of the optical
image is, of course, prevented if it lies behind the
retina.

Given the necessary data, the position and size
of an optical image can be determined from the
algebraic formulae already given in this chapter.

Example 1

An object 50 mm high 1s situated on the optical
axis of the standard emmetropic reduced eye at 2
distance of 250 mm from its principal point. Find
the position and size of the optical image.

It is easier to work in terms of vergences. Thus

£ = —-250mm
L = 1000/~250 = —-4.00D
F. = +60.00D
L' =L+ F, = +5.00D
[ I = 4000 -
€ 1000="/L 3 X 56 +23.81 mm

The heigh.t &' of the optical image can be found
from equation {2.10)

50 X —4.60
+56.00

The minus sign denotes inversion of the image.

Since the image distance in this case
(23.81 mm) is greater than the axial length of the
eye (22.22mm), the optical image becomes a
theoretical construction only.

¥ o= AL = = ~3.57 mm

Object at infinity

An object at infinity is imaged in the plane of the
second principal focus. Its size depends on the
angular subtense of the object.

In Figure 2.18, rays from the extremity Q of a
distant object inclined at the positive angle « to
the optical axis are focused at Q' in the plane of
F:. A ray through the nodal point is undeviated.
A ray incident at P 1s deviated towards the axis,
the refracted ray making an angle «" with it such
that

nsing’ = nsinu

in accordance with the law of refraction.

Qateo
7] P N F'e

Figure 2.18. Image construction in the reduced eye: distant
object.
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he last expression can be put n the simpler
‘paraxial form

nu = nu =y (2.15)

i " I e i = S L D 2 1 T Y

' = u/n' (2.16)
From the diagram

u.r = _klzf;
and thus
k= —u'fe = —ufi/n’ = —u/F, {2.17)

p this expression, £’ is in metres and « in radians.

anmple 2

distant object subtending an angle of 5° is
tewed by a reduced eye with a power of +62 D.
ind the position and size of the optical image.
4000
3 x 862

5 X @/180 = 0.0873 rad

~0.0873 X 1000
Ha = = —14

€= fo=d/F, = = +21.51 mm

U

et by

y-construction methods

Ilhe image formed by a single refracting surface
s_‘ch as the reduced eye can be found by con-
s .uctingltwo or more ray paths from the given
object point.

f‘Diagrams of this kind are drawn to scale, but
different scales may be used for horizontal and
vartical dimensions. The refracting surface should
be replaced by the tangent to its vertex.

.|The ray paths commonly used in these con-
st uctions are shown in Figure 2.19, in which BQis
an object for the eye. The image point Q' is the
ilj-ﬁfersection of any two {or more) of the following
rﬁf‘acted rays originating from Q.

Ray 1 Parallel to the optical axis, passing

: through F after refraction.

Ray 2 Through the first principal focus F.,
: refracted paralle! 1o the axis.

Ray 3 Through the nodal point, undeviated.

Ray 4 Directed towards the principal point P,

[To find the refracted ray path for this last ray,
logate the point Y on BQ such that

'BY = BQ/x' = 0.75 BQ

a +

Figure 2.19. Image construction in the reduced eye: near
object.

The refracted ray path is YP produced. This
construction is justified by equation (2.16) which
can be written as

tanz’ = (tan u)/n'

since it has already been assumed that » is small.

It can be most useful to carry out constructions
of this kind, verifying the results by calculation.
However, it should be borne in mind that they are
subject to the same limitations as the approxi-
mate expressions on which they are based.

Nature of mirror imagery

The so-called lateral inversion of the image
formed by a plane mirror, notably one’s own
reflection, still gives rise to perplexity and debate.
Arguments from psychological or related grounds
tend to be needlessly invoked.

To understand the true nature of mirror
imagery demands consideration of an object in
three dimensions, not two. For a plane mirror,
any object point and its reflected image lie on a
common normal to the surface and are equidis-
tant from it. Consequently, the object shown in
Figure 2.20, representing a central vertical section
through the head of an observer, is imaged as
depicted. The image is formed as though the
object had been pulled through the mirror, and
turned mside out in the process. The same would
take place in any vertical section parallel to the
plane of the diagram. As a result, the left eye of
the observer appears as the right eye of the
three-dimensional image gazing back at him.

Just as a right-hand gilove turned inside out
takes the form of a left-hand glove, so the mirror




Image Mirror Object

Figure 2.20. Vertical scction through the centre of an
observer’s head and its mirror image. Since imagery of the
same type takes place in every plane parallel to that of the
diagram, it follows that the left eye of the observer becomes
the right eye of the three-dimensional mirror image, and
vice-versq,

image of one’s own right hand apears as a left
hand. The same three-dimensional transforma-
tion is shown by the virtual images formed by
concave and convex mirrors, accompanied by
magnification or its opposite.

Clearly, the term ‘lateral inversion’ does not
adequtely describe the phenomenon. ‘Mirror
metamorphosis’ is offered as an improvement on
the term ‘perversion’, which has been suggested
in the past without gaining effective support.

Exercises

2.1 (a) A pencil of rays emerges from a lens with a vergence of
+6.00 D. What is its vergence after a twavel of i0mm in air?
(b} A pencil of rays emerges from a lens with a vergence of
—8.00D. What is its vergence after a travel of 15 mm in air?
2.2 The macula of an emmetropic reduced eve has a diameter
of 1.5mm. What angle does it subtend at the nodat point and
what is the corresponding linear extent of abject space at 10 m
from the eye?

2.3 A schematic eye has a single-surface cornea of 7.5mm
radius of curvature, an anterior chamber depth of 3mm and a
homogeneous crystalline lens of thickness 3.5 mm. refractive
index 1.4 and back surface radius of curvature —6 mm. Both

aqueous and vitreous have a refractive index of |.336. Calcu-
late the position and magnification of the entrance and exit
pupils.

2.4 "The diagram. (not to scale) illustrates the positions P and
P’ of'the principal points of a telephoto lens system formed by
two thin tenses of power +10D and -5D at Ay and A,
respectively. An object point B and its image B’ are also
shown. From the given measurements, ail in mm, determine
the following distances, using in cach case only distances of
stated length and paving strict attention to signs: AP, ALF,
PP’ F'B’ and PB. {Example: FB = FA, + A,B = —(—162.5)
+ (—662.5) = =500 mm.)

—~662.5

L ~162.5
ds |r P A

125

+81.25
A2 Fr .‘B'

_15l +60 4
+125

2.5 The diagram illustrates a diverging meniscus lens of
thickness ¢ with its first principal point P at a distance ¢ from
vertex A, and its second principal point P’ a1 a distance ¢
from vertex A,. An object point B is at a distance £ from P and
its image B’ at a distance € from P’ Using only these letter
symbols, express the following distances: P'A|, A,B’, PP’, B'P
and BE'. (Example: A\B = AP+ PB =, + é.)

) e’ ]
o
B B A, A, PP
]
e
; ¢
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bocks and tape-recorded
on loan, while local author-
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children, the

Secuffty, 1979), the incidence, degree 3
blindness in England were shown
similar in the two sexes. Amg
major causes are congenitag}” anomalies, optic
nerve atrophy and cataract/The two latter condi-
tions, together with chorgidal atrophy, glaucoma,
diabetes, retinitis pigMientosa and other retinal
conditions, are the/main causes of blindness i
adults.

A further Weport by the Departmen
published i
1976/77
little_#hange in the annual er of new

in the fact that the age up 75 and over
constitutes a growing pergéntage of the total of
le four years separating . .
the two periods studipd the percentage rose from  Modulation transfer function and
34.1 to 38.6 per cedf. In this most elderly group, the eye

rf:tmal degenerfive conditions are the largest  The sinusoidal grating

A\mong dults up to 64 years old, diabep Caonventional clinical assessments of visual acuity
retinop 1s the largest single cause. A poj are related to the eye’s resolving power. Another
j method of assessment is based on the eye’s sensi-
pfoportion of women to men who be tivity to luminance contrast. Although ‘square
for this reason within the age groyg”35 to 64. wave’ or Foucault gratings could be used for this

A more detailed study of thigKeport has been  purpose. sinusoidal gratings (Figure 3.23) arc pre-
ferred. The name arises from the fact that a
continuous plot of the luminance along a perpen-
dicular to the bars would represent the function

In the USA, a typical
that ‘a person shall be

y = asin(bx) + ¢

vision such t i i isua An important advantage of this tvpe of grating is

field subt i that even when defocused or affected by aberra-
1 tions, its image generally retains the sinusoidal
According to the amend i 1 luminance pattern.
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Figure 3.23. (a) A squarcowave or Foucault grating. (b} .\
sinhisoidal grating of the same frequency. The upper drawings
shaw corresponding three-dimensional representations of the

‘Basic definitions may be understood by reier-

|| enge to Figure 3.24 which shows the luminance
[| cugves of two sinusoidal gratings having the samy

mgan luminance and cvcle width.

If i is the minimum and Lnax the maximum
luminance, then

max Lmin

Modulaton = == __—mn 3.16
cduiation Lm;:x + Lmin ( ))

: :'"ab{e 3.4 gives the values of Lowiss Liniy, and the
;|modulation for the two curves illustrated in Figure

3.8 )

Tahle 3.4 Values for luminance curves A und B in Figure 3.24

Y Curge Lo Livan Mean luminance Modulation
HA 0 80 10 H
(B 30 50 40 0,25
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spatial luminance profile. (Material for this tlustration kindly
provided by Dr J. Barbur.)

The modulation can be regarded as the maxi-
mum change in luminance from its mean value,
cxpressed as @ rado of this value. When the
minimum luminance is zcro. as in curve A, the
modulation is cqual to unity.

In the literaware of contrast sensitivity, the term
‘contrast’ has come into general use to denote a

&—— Cycle widthj
80
A VAN
8 60
g sl s LT\
. v_ﬁ
. N4

Luminance profile of part of grating

Figure 3.24. Sinusoidal grating: liminance profile, Curve A
has greater modulation than curve B,
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numerical value of modulation as defined by
equation (3.16). It is usually expressed as a
percentage. For purposes of comparison, this
same definition of contrast is sometimes applied
to test charts of both high and low contrast. In
other contexts including standardization, the
contrast of a test chart is defined differently as
noted earlier (see page 41).

The cycle width of a sinusoidal grating corres-
ponds to the ‘grating interval’ of a squarc grating,
but is usually expressed as a spatial frequency.
Thus, if the cycle width subtends an angle of 6
degrees at the observer's eye,

Spatial frequency v = 1/0 cycles/degree

For example, 60 cycles/degree corresponds 0 a
cycle width subtending | minute of arc. Gratings
used as test objects do not necessarily have a
uniform spatial frequency. For some purposes it
may vary in a definable manner, such as logarith-
mically.

If a sinusoidal grating is presented to the eye,
its threshold of recognition as a grating is affected
both by its spatial frequency and its luminance
contrast.* As the contrast is reduced, recognition
becomes harder as with other test objects.
Moreover, with high spatial frequencies the loss
of contrast in the retinal image is greater than
with low frequencies, again making recognition
more difficult.

In numerical terms, contrast sensitivity at a
given spatial frequency is the reciprocal of the
threshold value of the modulation as defined by
equarion {3.16). It is a measure of the cye's
ability to detect small differences in luminance.

For example, if a grating can just be resolved
when the modulation has been reduced to 0.08,
the contrast sensitivity is 12.5. If the threshold
modulation had been at the lower figure of 0.02,
the contrast sensitivity would have risen ta 50.
This higher value indicates a superior perform-
ance.

The modulation transfer function

When a sinusoidal grating is imaged by an optical
system, the contrast of the image is reduced by

* In this context, the term luminance contrast has come to be
used as a synonym for modulation in its quantitative sense.

the cffects of aberrations and diffraction. Never-
theless, it retains the sinusoidal luminance pat-
tern, though with a lowered modulation. In
general, the ratio of the modulation of the image
of a grating of given spatial frequency to that of
the object is called the modulation transfer factor.
A plot of this transfer factor .against spatial
frequency depicts the modulation transfer func.
tion (MTF). It provides a good indication of the
performance of the image-forming system at
varying frequencies, not just the finest.

Meodulation transfer functions for the optical
system of the human eye were obtained from a
two-stage experimental process by Campbell and
Green (1965a). In brief, their method was to form
sinusoidal interference fringes on the retina by an
adaptation of Young's double-slit system (see also
page 52). In this arrangement, the angular
separation 8 between successive bright fringes is
given by

6 (rad) = (Ma) x 1078 (3.17)
where A is the wavelength (in nm) of the
monochromatic light source used (632.8nm in
this experiment) and a (in nm) the separation of
the slits. To vary the contrast of the interference
patiern, the source producing it was dimmed. At
the same time, the mean retinal illuminance was
kept constant by the addition of a uniform field of
light of the same wavelength. Since the interfer-
ence {ringes are not affected by the eye’s optics,
measurement of the threshold modulation as a
function of spatial frequency gives the contrast
sensitivity of the retina and neural system alone.

To provide a comparable test object viewed
dircctly by the entire visual system, including the
degrading effects of the ocular dioptrics, a sinu-
soidal grating was generated by means of an
oscilloscope with a spectral luminance peak at
530 nm. The performance of the eye was consi-
dered not to vary significantly between
wavelengths of 530 and 632.8 nm if the luminance
were the same. The contrast sensitivity was deter-
mined over the same range of variables as before.
For the same observer with a 2mm pupil, the
results are shown by the lower curve in Figure
3.25. Since the actual contrast in the retinal image
at the threshold of recognition can be assumed to
be the same in both cases, the reduced contrast
sensitivity for the grating imaged by the eye can
ouly be due to the defects and limitations of the
eye's optical system with a pupil diameter of
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Fig’ure 3.25. Contrast sensitivity of the human cye. Upper
curve: measurements obtained from interference fringes,
asspssing retinal/neural function; lower curve: measurements
obtained from an oscilloscope display, assessing optical as well
as:petinal/neural factors. (Redrawn from Campbell and
Gr‘en, 1965a by kind permission of the publishers of /.
Physiol.)

|2nm. The oscilloscope observations can be re-
| pe.

ted with other pupil diameters.

‘or a spatial frequency of 1 cycle/degree, a
1soidal grating viewed at 40 cm would need to
haye a cycle width of 7.0 mm. As suggested by
res 3.25 and 3.26 and confirmed by other
restlts, the spatial frequency for which the

}|contrast sensitivity is greatest is about 3 cycles/
i \degree for a typical observer. A limiting frequency
of BO cycles/degree, corresponding to a cycle
(width of 2 minutes, would conventionally be
.lequated to an acuity of 6/6 (20/20), at least for a

square-wave grating.
Al modulation transfer function can be plotted

from the data of Figure 3.25. Because contrast
.sengitivity is the reciprocal of modulaticn, it
follgws that the modulation transfer factor is the
5 n\%:sc ratio of the sensitivity for the interference

es to that for the oscilloscope display. For
mple, at a spatial frequency of 10 cycles/

40 ‘gycles/degree the values are approximately

17.5and 4.9, the transfer factor being 0.28.

"The complete graph of the modulation transfer

function for this pupil diameter is shown in Figure

3.27) together with the curves for pupt! diarneters
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Figure 3.26. The contrast sensitivity function {mean of
mcasurements on ten normal subjects aged between 18 and 27
years). The bar lines represent +1 standard error. Note that
both scales are logarithmic. (Reproduced from Wright and
Drasdo (1985), by kind permission of the publishers of
Documenta Ophthalmologica and reprinted by permission of
Kluwer Academic Publishers.)
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Figure 3.27. Modulation transfer function for 2 human eye at
various pupil diameters. (Reproduced from Campbell and
Green, 1965a by kind permission of the publishers of /.
Physiol.)
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38  Visual acuity and contrast sensitivity

of 2.8, 3.8 and 5.8 mm, all for the same subject. It
can be seen that the curves for 2 and 2.8 mm
pupils are not only very close together, but actual-
ly cross over at about 27 cycles/degree. On this
evidence, the eve's performance changes little
within this range of pupil diameters — a result
confirmed by the lightly curved top of the acuity/
pupil diameter graph of Figure 3.6.

Campbell and Green (1965b) showed that the
contrast sensitivity measured binocularly was
approximately 40% better than that found under
monocular conditions over a wide range of
frequencies. They attributed this to the summa-
tion of signals from the two eyes.

Normalized spatial frequency

If an eye of pupil diameter g had a perfect optical
system limited only by diffraction, the minimum
angle of resolution 8., for two point sources
would be

Onin (rad) = 1.220/g (3.2)
For a sinusoidal grating, with 8., the smallest

angular - cycle width which can be resolved, the
corresponding relationship is

Bmin = h/g (rad)

= 57.3Mg (degrees) (3.18)
The maximum spatial frequency {Vmax) which
can be discerned — the ‘cut-off point’ - is thus
Vmax = 1Jlfemin

= g/57.3% (cvcles/degree) (3.19)

For example, given ¢ = 3 mm and A = 560 nm
Vmax = 3 X 107%/(57.3 x 560 x 107%)
= 93.5 cycles/degree

To facilitate comparison between the MTF of
an actual eye and that of a diffraction-limited eye,
the concept of normalized spatial frequency is
used. Irrespective of pupil diameter and
wavelength, the cut-off frequency Vpax for the
diffraction limited eye is fixed at unity. On this
normalized scale, any actual value of v is replaced
by the normalized value v, such that

vﬂ = v/vmax
From equation (3.19) it follows that
v, = (57.3Mg)v

with v, and v both in cycles/degree.

(3.20)

In this way a single MTF curve can be used to
represent any diffraction-limited optical system,
irrespective of particular values of g and A.

The complete MTF for a diffraction-limited eye
or optical system can be calculated by standard
mathematical procedures (Westheimer, 1972a). If
the pupil were rectangular in shape, with its
narrower width g perpendicular to the grating
bars, the MTF graph would be a straight linc as
shown in Figure 3.28. For a circular pupil, the
graph assumes thc shape indicated in the
diagram. The cut-off point is the same for both.

In Figure 3.29, the MTF curves of Figure 3.27 are
shown re-plottcd on a normalized frequency
scale. This process could have been carried out by
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Figure 3.28. The modulation transfer function for a
diffraction-limited eve or system with a slit and a round pupil.
{Reproduced from Westheimer, 1972 by kind permission of
the publishers. Springer, Berlin and New York.}

Modulation transfer factor

0 1 1 L 1 1 I F
01 02 03 04 05 06 07

Normalized spatial frequency

Figure 3.29. The modulation transfer function of a human
eye plotted for a normalized spatial frequency. (Reproduced
from Campbell and Green, 1963a by kind permission of the
publishers of J. Phvsiol.)
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using equalion 1a. J0), for exaniple. the end point
of the graph for 5.8 mm pupil size in Figure 3.27
occurs at an actual frequency of about 45
cycles/degree, the wavelength being 530 nm.
Accordingly,

57.3 X 530 x 107° .

v, = 58 % 107 X 45 = 0.24
which agrees with Figure 3.29. If continued, the
graph representing the diffraction-limited system
would meet the x-axis at the cut-ofl point where
v, = I.

The curves in Figure 3.29 for various pupil
diameters of the same eye should not be com-
pared with each other, but only with the theore-
tical comparison curve. The diffraction-limited
eye performs better as its pupil diameter increascs
and so becomes a harder standard of comparison.

The double-pass technique

The double-pass technique requires only one set
of experimental results from which to compute
the MTF of an eye. It has been used in many
investigations. In the arrangement described by
Campbell and Gubisch (1966), the image of a
narrow illuminated slit is formed on the fundus.
Acting as a diffusing surface, the fundus reflects a
portion of the incident light back through the
pupil. It then passes through a beam-splitter and
a converging lens which forms an aerial image of
the fundus streak. This can be examined either
photographically or photo-electrically, allowance
being made for the effects of the reverse passage
through the optical media. Analysis of the light
distribution in the streak image enables the line-
spread function of the eye’s optical svstem to be
determined. Its graph resembles a Gaussian nor-
mal distribution curve. By a mathematical pro-
cess known as Fourier analysis, the modulation
transfer function can be computed from the line-
spread function. In this context, Fourier’s more
general theorem shows that the light distribution
across a narrow slit or its image can be resolved
into an infinite series of sine waves of increasing
frequency.

The conventional index of the narrowness of a
(raussian-type curve is its ‘half-width’ - the width
at half the peak value. Graphs of the image
line-spread for one of Campbell and Gubisch’s
subject’s showed the half-width o decrease with
pupil size: from 6.2 minutes of arc at 6.6 mm

pupli diameter to Z.2 minutes at 2.4mm pupil
diameter. For smaller pupil sizes, the half-width
increased, reaching 3.2 minutes with a 1.0 mm
pupil. Over this range, the reduction in the eve’s
aberrations becomes increasingly outweighed by
the effects of diffraction.

The MTF graphs obtained by Campbell and
Gubisch for their three subjects are broadly simi-
lar to the results of Campbell and Green (1965a).
For two of their subjects the curves for 2.0 and
3.0mm pupils cross over as in Figure 3.27.

Square-wave (Foucault) gratings

Unlike sinusoidal ones, square-wave gratings are
easily produced without special equipment, mak-
ing them usefi!l experimentally. According to
Fourier analysis, a square wave of frequency v
and amplitude e, denoting Y2(Lpay — Lmin), 15
equivalent to a sine wave of the same frequency v
but of amplitude 4a/7 plus a series of sine waves
of increasing frequency and decreasing ampli-
tude. Each wave, including the first, is called a
harmonic. The nth harmonic has the frequency av
and amplitude 4a/mrn, but in this series only the
odd-numbered values of n are included, as shown
in Table 3.5.

Table 3.5 Frequency and amplitude of odd-numbered
harmonics

Harmonic Frequency Amplitude
First v ta/m
Third v 4a/3m
Fifth v 4a/3m

The hold lines in Figure 3.30 show one half of a
square wave of amplitude ¢ and the correspond-
ing half of the first harmonic of the equivalent
sine-wave series. The lower part of the diagram
shows the third and fifth harmonics. Curves
representing the sum of the first and third, and
the sum of the first, third and fifth harmonics are
also displayed. It can be scen that even though
these curves still oscillate, they steadily approach
the outline of the square wave.

If the third and subsequent harmonics are
ignored, a square-wave grating can be regarded
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Figure 3.30, Partial generation of a squarewave by
compounding sine waves of frequencies of the first, third and
fifth harmonics.

as a sinusoidal grating of the same spatial fre-
quency but of 7/4 times the amplitude. It then
foilows that the contrast sensitivity thresholds for
square-wave and sinusoidal gratings of the same
frequency and amplitude should in theory be in
the ratio of 4/7.

Since the frequencies of the subsequent harme-
nics are maultiples of the basic frequency (of the
first harmonic), they could all be situated beyond
the cut-off point. For this reason alone it is
evident that they can become significant only
when the basic frequency lies within a restricted
range. The limits of this range were explored by
Campbell and Robson (1968) by determining the
contrast sensitivity thresholds for square and
sinusoidal gratings of the same frequency and
ampiitude. The expected ratio of 4/7 was found to
hold good for gratings of spatial frequency ex-
ceeding 0.8 cycles/degree. At lower frequencies,
the ratio increased rapidly, probably due to selec-
tive response by individual neural elements in the
visual system to particular frequencies.

Effects of defocus and spurious resolution

All the MTF results described above have
assumed the eye to be in focus for the grating.
When it is out of focus, the theory of both
geomertrical and physical optics predicts that
modulation transfer suffers appreciably, even for
very small errors. This is shown in Figure 3.31
(Charman and Jennings, 1976), which refers to

Modulation transfer

|
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Figure 3.31. Variation in the modulation transfer function
with defocus for an aberration-free eye with a 5 mm diameter
entrance pupil, according to physical opeics. The solid curves
show the MTFs at 430 nm, the broken curves the MTFs at
630 nm, for both pesitive and negative errors of focus of the
amounts indicated in dioptres. There is very little difference
between the MTFs at the two wavelengths when the errors of
focus are large. {Reproduced from Charman and Jennings,
1976 by kind permission of the publishers of Br. J. Physiol.
Optics.)

the theoretical diffraction-limited eye with a 5
mm pupil. Even with an error as small as 0.12 D,
the modulation falls much more rapidly with
increasing spatial frequency than in the perfect
eye. As the image modulation in the defocused
eye drops to zero, it falls below the threshold for
detection. The grating can no longer be resolved
but assumes a uniform grey appearance.

At spatial frequencies greater than this
threshold value, a phenomenon known as spu-
rious resolution may occur. A simple explanation
in general terms can be given with reference to a
Foucault grating of relatively low spatial frequen-
cy. The effects of diffraction can then be ignored,
being negligible in relation to those of geometrical
out-of-focus blurring.

In Figure 3.32, the lines AB, CB, etc. represent
the dark bars of a Foucault grating, equal in
width to the white bars. If BC 1s taken to be a
luminous line, the cross-section of a white bar, its
blurred image consists of a succession of overlap-
ping blur circles of diamecter j and its overall
length JK is equal to (BC + 7). When the bar
width is greater than j, as in Figure 3.32(a), the
blurred images of the white bars are well sepa-
rated and in register with the actual white bars.

An essential part of this explanation is that the
luminance of the blurred image of any white bar

R

e e R R L ot o




‘tion
aceer
irves
at

he
nce
irs of
s

33,

abd
2D,
with
rfect
ased
ifor
ived

this
spu-
tion
toa
en-
red,
‘ical

sent

| in ¢

3¢ a

. its

lap-

rall

bar
the §
pa-
trs.

the

bar

{b)

|

il
Figure 3.32. Spurious resolution: an explanation based on
gedmerrical optics.

sugh as BC is not uniform along its centre line JK
buht tapers off identically at each end.

s the bar width decreases with remaining
comstant, the successive blurred images begin to
ovérlap as in Figure 5.32(8). For one particular bar
width, the overlap of the two end portions of
diminishing relative luminance is such that their
combined luminance visually matches that of the
sugrounding areas. This condition occurs when

ST

theg bar width is approximately equal to J/2.

4pt first sight this would appear to indicate the
cutroff spatial frequency of the grating for the
|given degree of blurring. If, however, the bar
| width is further decreased beyond this point, asin
Figure 3.32(c), the areas of overlap become larger.
¢ sum of the two separate luminances then
thes a peak at the midpoint M of the overlap
areg, higher than that in the area surrounding the
overlap. A periodic pattern thus re-emerges
ally, giving rise to ‘spurious resolution’,
vever, since the luminous peaks at M are
ated at the centre of the black bars of the
grating, a black/white reversal has occurred.

As the bar width continues to be reduced, a
secqgnd point is reached where the luminance
acrgss the grating is apparently uniform. This
occars when the bar width is approximately j/4.
\Spufious resolution also re-occurs as the bar
iwidth continues to decrease and further similar
sequences are possible, though not necessarily
discernible.
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radial grating, such as Figure 3.33, which gives
increasing spatial frequency towards its centre.
Grey annuli scparating zones of successive con-
trast reversal or discontinuity can be seen if the
grating is held close to the eye with the accom-
modation relaxed.

In Figure 331, contrast reversal of spurious
resolution occurs when the modulation transfer
factor assumes a negative value. These graphs,
calculated on the basis of physical optics, give a
more reliable picture than computations based on
geometrical optics. Nevertheless, as shown by
Charman and Jennings, the differences are neg-
ligible when the defocus error exceeds 0.50 D.

A dctailed theoretical analysis of spurious re-
solution has been given by Smith (19822). One of
his conclusions is that spurious resolution is
unlikely to be visible when the spatial frequency
exceeds about 35 cycles/degree.

Figure 3.33. Radial square-wave grating to demonstrate
unresolved annuli and zones of spurious resolution when held
close to the eye and viewed out of focus.

Contrast sensitivity
Clinical considerations
Contrast sensitivity testing is normally under-

taken at photopic luminances. The results of Van
Nes and Bouman (1967), Figure 3.34, show a
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