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]. Optics of the Human Eye

Introduction

Optical Components of the Eye

Optically, the human eye is fairly typical of vertebrate eves
in general and is not distingwished by any remarkable
characteristics. It lacks, for example, the exquisite resolu-
tion of the eves of many raptors, the enormous range of
focussing power of some diving ducks and cormorants or
the subtle duplicated optical system of the four—eyed fish,
anableps, Nevertheless its optical performance is weil
matched ro the capabilities of the neural network which it
serves. As Helmholtz remarked with characteristic

i acuteness over a century ago, ‘The eye has every possible

defect that can be found m an optical instrument and even
some which are pecultar to itself; but they are so counteracted,
that the inexactness of the image which results from their
presence very little exceeds, under ordinary conditions of
illumination, the limits which are set to the delicacy of sensa-
tion by the dimensions of the retinal cones’ (Helmbholtz,
1962). :

Knowledge of the way in which light propagates
through the eye s crucial to the understanding of the

:] abilities of the whole visual system, since formation of zn
| optical image on the retina is the first stage in the complex
{ processes which lead to perception. In general the retinal
.| image is not a simple, reduced-scale reproduction of the
" external world but differs from it in such factors as spatial
| form, spectral composition, polarization and light flux,
|- due o the transmission and imaging characteristics of the
-1 ocular media.

In this review we shall consider first the optical charac-

! teristics of the individual components of the eye and then
.| the way in which these combine 1o determine the overalt
| optical performance. Related reviews which set these

human characteristics in the wider context of the evolution
of vertebrate and invertebrate eyes will be found in

.| Volume 2 of this series (Gregory, 1991).

The main optical features of the eye are illustrated in
Fig. 1.1. Full details of these structures are given in
numerous exs (e.g. Duke-Flder and Wybar, 1961;
Records, 1979; Davson, 1980; Moses and Hart, 1987).
The techniques used to determine the dimensions and
optical characteristics of each component are discussed by
Charman, Chapter 16 and Henson, Chapter 17.
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Fig 1.1 Schematic horizontal section of the human eye.

General Shape of the Eye

Theglobe of the adult eve can be approximated asa sphere
with an average radius of ~ 12 mm. [t is completed anter-
iorly by the transparent cornea, which forms a roughly
spherical cap with z radius of curvature ~ 8 mm, the dis-
tance between the centres of the spheres being about 5 mm
{e.g. Le Grand and El Hage, 1980). Most eves are, in fact,
somewhat flattened posteriorly and the larger sphere is
slightly conical anteriorly. There is also often some asym-
metry about the anterior-posterior axis (Deller ¢t al., 1947,
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Sorsby,1948). The eye at birth is only some 18 mm long,
as compared to ~ 24 mm in aduithood, so that the relative
growth rates of different parts of the eye need somehow to
be syiiciironized if the potential for a sharp retinal image s

' to be maintained throughout early life: the implications of
this for the development of refractive error are discussed
by Young (Chapter 2).

Cornea

* The vertical and horizontal diameters of the adult cornea
are about 12 and 11 mm respectively. It is covered by the
tear film, some 5 um thick (Ehlers, 1965; Maurice, 1967).
Among other functions, this serves to maintain the
smoothness of the optical surface, Undoubtedly the
irregularities in the thickness of the components of this
film, of the order of the wavelength of light, which pro-
gressively arise during the inter-blink period as a result of
evaporacion (Guillon, 1982; Josephson, 1983), must have
some effects on the quality of the retinal image but little
attention has so far been devoted to these.

The cornea is a relatively complex structure made up of
several distinct layers — the epithelium, Bowman’s mem-
brane, the stroma, Descemet’s membrane and the endo-
thelium, the stroma making by far the greatest
contribution {~9%0%) to the overall thickness of about

0.5mm at the centre of the cornez and 0.7 mm at the

periphery {Steindorff, 1947, Martola and Baum, 1968;
Hirp and Larke, 1978; Azen er al, 1979). The optical
inhomogeneity contributes to the scattering of light from
the cornea that allows this element to be seen in optical
section with the slit-lamp microscope. Of particular |
importance is the way in which the constituent collagen
fibres, each 25-33nm in diameter, are arranged in the
stroma. Not only do their structure and arrangement lead

(a) :
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to birefringence (see Bour, Chapter 3) but also their quasi-
unttorm size and regularity are of vital importance to cor-
neal ransparency. The fibres form approximarel- repular
sstices. Thus, although scattering ueours from v fibre
due to the differences in refractive index berween the
fibres and the interstitial material, the resultant scartered
light from the overall lattice interferes destructively in ail
directions except that of the incident radiation, leading to
good corneal transparency unless the regularity of the
stromal lattice is disturbed by cedema or trauma (Mau-
rice, 1957, 1969, 1970; Hart and Farrell, 1969; Feuk, 1970,
1971; Benedek, 1971).

Although the anterior surface of the cornea approxi-
mates to a sphere, the details of its contour have received
intensive study as a result of its influence on the fit of
coneact lenses (e.g. Prechtel and Wesley, 1970; Mandell
and St Helen, 1971; Clark, 1972, 1974a, 1974b; Fujii ez o/,
1972; Mandell, 1974; El Hage, 1976; Kicly f al,, 1982
Edmund and Sjontoft, 1985; Guiilon ez al., 1986; Dinge}-
dein and Klyce, 1989). Since, too, the anterior cornea
makes the greatest individual contribution to the overall
power of the eye of all its optical surfaces, due to the large
change in refractive index from air to cornea, its form is of
great interest with regard to its role in determining the
aberration of the retinal image.

The general picture of the corneal contour thar has
emerged is that, typically, the radius of curvature near the
anterior pole takes its smailest value of about 7.8 mm and
that the surface progressively flattens towards the peri-
phery. There are, however, wide variations in the topo-
graphv - of individual corneas. In some instances the
corneal curvature may steepen towards the periphery and
complete rotational symmetry is unusual (e.g. Bonner,
1959; Mandel! and St Helen, 1971; Clark, 1974a; Kiely et

al., 1982; Guillon et al., 1986; Dingeldein and Klyce,
1989). Examples are shown in Fig. 1.2 (a) and (b).
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Fig. 1.2 The corneal contour: fa) An example showing the asymmetries present in an individual cornea. The data are expressed in
terms af the departures from a spherical surface which best fits the central cornea, measured along the horizontal, vertical and 45°

oblique meridians (after Clark, 1974a). (b} An example showing the variation in the local power in dioptres of the corneal surface of
the individual cye (after Dingeldein and Klyce, 1989). (c) HHistogram showing the distribution of the corneal asphericity parameter, Q,
in a sample of 176 gyes {after Kiely eval., 1982). Q=0 corresponds to a spherical surface. '
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{|" since the vitreous tends to liquify. The consistency nor-
| mally increases from the lens towards the retina and from
| the centre towards the periphery (Le Grand and El
| Hage,1980). Optically, the vimeous hody in the voung is
| almost clear and free of refractive irregularities, although
/| these become more prevalent during old age (Weale,
{1 1963). The refractive index of the vitreous is about 1.336;

Millodot (1976) has suggested that this may increase

i| slightly with age.

| The Retinal Surface

Although an eye may produce a sharp image, it is necesary

| that the retinal receptors be in an appropriate spatial pos-
+| ition to accept this image, i.e. the receptor outer segrnents

should lie close to the surface of optimal image quality. On

i | the optical axis this implies that close constraints exist on

the length of the eye: if it is too long myopia will occur and

| if 100 short hypermetropia (see below), These effects have
| their counterparts at larger field angles. While the retinal
| surface approximates to a sphere, this need not necessarily
-{ match the curvature of the image surface. Moreover, the

retina does not always have rotational symmetry about the

1 axis of the eye, so that even if the optical components had
| perfect rotational symmetry, a mismatch would occur
-] between the optical image and the rettnal surface at some
| parts of the field. Fortunately, as the surfaces of the eye are

| approximately concentric about the pupil, these mis-

.| matches are, in general, surprisingly small. At the retina
.| the transmission and absorption of light in the receptor

outer segments is strongly affected by optical waveguide

.- | effects: these are fully discussed by Enoch and Lakshmi-
.| narayanan (Chapter 12) and will not be constdered further
“{ here. '

|Ocular Asymmetries and the Optical Axis
|of the Eye

i 1As has already been noted in the cases of the anterior
: |cornea and retina, the optical surfaces of the eye may lack
|rotational symmetry and their nominal centres of curva-
-} |ture may not lie on a common axis: meridional changes in
-jradius of curvature lead to ocular astigmatism (see How-
:{land, Chapter 18). The pupil centre may also be displaced.
- |These cffects can be demonstrated by the observation of
. ithe Purkinje images {see Henson, Chapter 17). Neverthe-
. [less, these various decentrations, asymnmetries and tilts are
 jsmall in most eyes and a nominal optical axis can be ideng-
“ified. It is interesting to note that this optical axis does not

lin general intersect the retina at the fovea but rather some

|15 mm (5°) nasal and 0.5 mm (1.5%) superior to the fovea
' {Emsley, 1952). If we define the visual axis as the two

parailel lines passing from the fixation point to the first

t nodal point of the eye and from the second nodal point to

the fovea, the angle between the optical and visual axes is
called angle « and typically takes a value of about 5°. A
varicty of other, closely-related angles whose use is
clazmed t¢ be ~dvantagecus under some ciicdmstances,
are defined in the literature (e.g. Duke-Elder and Abrams,
1970; Le Grand and El Hage, 1950).

Eye Models and Refractive Error

Given a knowledge of the parameters of a normal eye it is
obviously possible to construct a model with similar
tmaging characteristics. Such models have many uses, e.g.
in predicting the dimensions of retinal images and their
changes with accommodation and correcting lenses, in
relating the image dimensious to those of retinal receptors,
int predicting the effects of changes in ocular parameters on
overall refractive state, and in relation to surgery, particu-
larly in determining the power of inraocutar lens that is
tequired (see Ridgway, Chapter 7),

Paraxial Models

Any model is likely to involve some simplification in comn-
parison with real eves and most earlier models assumed

o N
F \Q N’ /F

5 (N )
F lﬁp\y/n )F

\

/

2 ¢

F P\P" NN’

mm

Fig. 1.5 Examples of paraxial models of the human eye. In each
case F, F'; P, P'; N, N" represent the first and second focal,
principal and nodal pornts respectively. {a) Unaccommodated
schematic eye with four refracting surfaces ( Le Grand and EI
Hage, 1980). (%) Simplified, unaccommodated schematic eye
with three refracting surfaces (Emsley, 1952). {c) Reduced eye
with a single refracting surface ( Emsley, 1952). Note thar
progressive reduction in the number of optical surfaces produces
only minor changes in the positions of the cardinal points.

: ONIOZENEOUS and that rmagery was para-
xial. In reality, as Le Grand and El Hage (1980) point out
m an excellent discussion of the limitations of such

medels, the pupil diamcters 2nd other dicnsions of the

eye are such that, even with the restricted pupil appro-
priate to photopic conditions, the ray angles exceed those
for which the paraxial approximation sinw=tan o=
@ holds. Watkins (1972) notes that for calculations accur-
ate o five significant figures the paraxial approximation is
only adequate for object field angles up to +2° and
entrance pupil diameters of < 0.5 mm. These models must
therefore be used with care.

Paraxial models have been proposed by a varicty of
authors {e.g. Guilstrand, 1924; Emsley, 1952; Ogie, 1968,
Duke-Elder and Abrams, 1970; Le Grand and El Hage,
1980; Fincham and Freeman, 1980; Bennett and Rab-
betts, 1988), the models differing chiefly in their exact
choice of parameters and the degree of simplification
mvolved. Examples are shown in Fig. 1.5 and the assoc-
rated values of the parameters are listed in Table 1.1. In
schematic eyes the cornea and lens are each usually repre-
sented by a pair of surfaces: a single surface is used for the
cornea in the simplified schematic eve. Since the two nodal
and two principal points lie very close together in all the
models, considerable simplification can be achieved by
using a reduced eye model consisting of 2 single refracting
surface. A reduced eye model of this type is perfectly
adequate for many calculations in visual oprics (e.g.

Emsley, 1952; Obstfeld, 1978).

Wide-Angle Models

With advances in understanding of the form of the sur-
faces of the eye and the refractive index distribution in the
lens, and in the application of computers to ray tracing,

Table 1.1 Parameters of some paraxial models of the human eye.

there have been an increasing number of attempts I
develop non-paraxial models which give useful predic-
tions of performance away from the axis. The simples:
approach is to mwroduce aspheric surtaces of revolutior
while reraining homogencous media (Lotmar, 1971
Drasdo and Fowler, 1974; Drasdo and Peaston, 1950
Kooijman, 1983; Navarro ez af., 1985). Such models car
be validated by comparing their predictions of off-axi:
aberration with that observed in real eyes. More elaboratc
models may involve the use of inhomogeneous lenses. The
carliest of these (although strictly a paraxial rather than 2
wide-angle model) was Gullstrand’s ‘No 1° schematic eye.
involving a high-index core and 2 lower index cortex, anc
the idez has been progressively extended through a variety
of models where the lens is approximated by a finite
number of ‘sheils’ of differing index to include smooth
gradients of refractive index (e.g. Gullstrand, 1924
Lotmar, 1971; Pomarantzeff ¢z af., 1972, 1983; Watkins.
1972; Blaker, 1980). There is little doubt that, with pro-
gressive refinement in the light of better experimental

. dara, these models will make valuable contributions to our

understanding of the off-axis optical performance of the
eye. :

Ocular Ametropia

Real eyes are not standardized in their dimensions bu, like
the rest of the bady, can be expected to show variation in at
least some of their individual parameters. The spread of
the values of the radius of curvarure of the cornea has
already been remarked upon and a similar scatter is found
in other ocular dimensions (see below). It is reasonable to
ask, then, whether our eye models can indicate the magni-
tude of change in any parameter which is likely 10 lead to a
clinically-significant refractive error.

Schematic eve
(Le Grand and
El Hage, 1980)

Reduced
schematic eye
{Emsiey, 1952)

Simplified
schemaric eye
{Emsley, 1952)

H Radii of Anterior cornea 7.80 7.8 : 5.55
i ] surfaces (mm) Posterior cornea 6.50 — —
o Anterior lens 10.20 10.0 —
Posterior lens —6.00 - 6.00 —
Disrances from Posterior cornea 0.53 — : —_
anterior - Anterior lens 3.60 3.60 —
cornea (mm) Postertor lens 7.60 7.20 —
Retina 2420 23.90 22.22
Refractive Cornea 1.3771 — i _
indices Agqueous humour 1.3374 1.333
Lens 1.4200 1.416 443
Vitreous humour 1.3360 1.333
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attempts to i X ,-Cons.ider, fc?r sirpplicity, Emsley’s r.educed eye model Obviously considerable approximation is involved in
eful predic- $° 1] (Fig. 15c). It is evident that a refractive error KD can  determining these values. A similar analysis could, of
he simplest : ‘1| arise if tl:lf? power qf th.e dfoptnc elements Fg=(n'— 1)/r course, be extended to more sophisticated eye models but
f revolution i (wh'ere ' 1s the refractive index of ..fhf- cremediaand ris  nevertheless the finding that changes of about /3 mm in
mar, 1971; | radius of curvature of the refracting surface) does not  axial length and 1/10mm in corneal radius of curvature
iston, 1980); | match the dioptric length oftheeye K" =n'[k' (where £'is  give refractive changes of about 1 D constitutes a useful
models can | the axial length of the eye), i.e. approximate rule-of-thumb. Refractive index values vary
. of off-axis K=K — Fe=(aJE) = (s ~ 1 13 very little from one eye to another (Le Grand and £] Hage,
re elaborate ) E ( ) [( ) it} (1.3) 1980) except for the lens in some pathological conditions
lenses. The fo To determme the change in X which arises as a result of (see Howe, Chapter 3). :
ther than a .|| change in any one of the parameters we may write;
ematic eye, i GK=0K 0K + 0K .bn'+ Okdr istributi S i
cortex, and ] i it & Distribution of Parameters in Real Eyes 7
gha variety o Surface curvatures, component separations and axial
by.a finite . jor lengths show considerable variation. Various studies have
ide smooth o SK = = (o [E ) + (1T~ [ D" + ([ — 1 D)Sr - shown that each follows an approximately normal distri-
ind, 1924 (o TRE)K + (LR~ (1D’ + (0’ = 1]122) (14  bution(eg. Stenstrom, 1946; Sorsby e al, 1957, 1981)
}; Watkins, o ’ (Fig. 1.6(a) to (d)). The spread of values is such that, in the
, With pro~ . Substtuting the standard values for £, # and r from light of the previous section, 2 high prevalance of large
perimental ] Table 1.1 we f{nd that the changes required to produce refractive errors might naively be expected to occur in the
jons to our i i 1 1? of myopia are approximately 8% = + (.37 mm, general populadon if the overall refraction of the eye arose
ince of the Eo e =+ 00074, Sr=—0.093mm: the signs of these  from random combinations of parameters having the

changes are reversed for I D of hypermetropia. distributions shown. In practice this is not the case
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€I MEAsUrements on

whole eye and other preparations. Such measurements are
difficult to make and the results are influenced by the
proportion of scattered light included (see also Henson,
Chaprer 17). Nevertheless, the general form of the results
is reasonably consistent, showing a rapid rise in trans-
mittance at around 400nm followed by high values
through the visible and near infra-red: the transmittance

0} { | | !
300 400 500 600
WAVELENGTH (nm)

1 !
700 809
Fig. 1.8 Transmittance of normal, human, erystalline lenses of
different ages. Although the measurements may not be entirely
representative of In vivo performance, the relative rransmittane

are likely to be realistic (after Lérman, 1980).
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due partly to the increasing pathlength through the pro-
gressively thicker cortex of the lens and partly to increased
pigm.ent deposition and, perhaps, scattering in the nucleus
(Said and Weale, 1959; Mellerio, 1971, 1987). The energy
of some of the short-wave radiation that is absorbed may

:1 appear as fluorescence at longer wavelengths (e.g.

Lerman, 1972; Satoh e al., 1973; Spector et al., 1975;
Bando er af., 1976; Lerman, 1980), aithough the effects of
this light in reducing retinal image contrast are believed to
be small (Boynton and Clarke, 1964). Some investigators
have suggested that the strong and increasing short-wave
absorption of the lens is helpful in protecting the ageing
retina from the ‘blue light hazard’ (e.g. Sliney and Wol-
borsht, 1980; Marshall, 1985) and that, for this reason,
intraocular implant lenses should have similar absorption
characteristics (see Ridgway, Chapter 7).

[t is worth noting that, because of the bi-convex form of
the crystalline lens, lenticular absorption may have some

*{ influence on measurements of the Stiles-Crawford effect
{ {(Stles and Crawford, 1933, see Enoch and Lakshmin-
| rayanan, Chapter 12) at shorter wavelengths: the path-
| length through the lens is substantially shorter for rays
-1 near the edge of the pupil, leading to a smaller absorption
-] loss and hence a reduction in the measured Stles—

Crawford effect over that occurring at the receptor level

| {Weale, 1961; Vos and Van Os, 1973). As already noted, it

is not strictly true to assume that the attenuation per unit

| path in the lens is position-independent, since regions of
| higher scattering and absorption obviously exist (e.g.
.| Brown, 1973; Sasaki ef /., 1930; Mellerio, 1987).

The light is further attenuated by the retina itself before

{ it reaches the receptor outer segments. Not only is there
-{ some loss due to scattering and reflection, conuibuting
| some 30%, of the total light scatter within the eye (Vos and
| Bouman, 1964) but there arc further screening effects
| from the retinal blood vessels (Kishto, 1970). In the foveal

region, the macular pigment, extending over the central
few degrees of the retina (Stanworth and Naylor, 1955;
Kilbride ¢ .., 1989) and lying anteric: w0 the receprui
outer segments (Snodderly er 4/., 1984) absorbs heavily at
short wavelengths (Fig. 1.7). It has been argued that this
pigment plays a useful role in reducing the blurring effects
of the longitudinal chromatc aberration of the eye, and
hence improving acuity (e.g. Reading and Weale, 1974).
However the amount of pigment varies widely between
individuals and may also be age-dependent (Bornstein,
1977): as yet there have been no investigations to explore
the possihility of any correlation between the amount of
pigment and the acuity achieved. -

Since the cornea, lens and the orented molecules of
macular pigment all show birefringence, the polarization
characteristics of light entering the eye are modified before
the receptor outer scgments are reached; likewise, the
polarization of light reflected back out of the eye under-
goes further modification. Bour discusses these effects in
detail in Chapter 13.

Ocular Radiometry and Retinal
Illumination

If we confine ourselves to uniform object fields subtending
at least 1° at the eye so that blurring due to aberration or
defocus has negligible effect, the retinal image would also
be expected to be uniform across its area, except at the
edges, provided that the field angles were moderate. Wys-~
zecki and Stiles (1967) show that the retinal irradiance, or
internal stimulus, in 2 wavelength interval 67, corres-
ponding to an external stimulus of spectral radiance
L., (8,¢) W per unit wavelength interval per cm? per unit

: 3-08 _ :
w5 ®) A ©
3 o 5
€ o =
v Poay [t
= 10 S T:n1'0
a ‘;0-0& =
[F] [
_g 05 o @ 0:5r
m E =
ar 0
- - =
| E i ! o !
' 0 & gl )
00 50 100 = 0 50 100 0- 50 100

Peripherat or field angle (deg.)

| Fig. 1.9 Influence of peripheral (field) angle on area of entrance pupst, retinad image area and retinal illumingnee for an object field of
N uniform luminance (Ganzfield). (a) Relative area of entrance pupsl (after Jay, 1962). (b) Area of retinal image corresponding to one
1 square degree of field (after Dresds and Fowler, 1974). (¢} Curve {a } divided by curve (b) and normalized to unity on the visual axis
{i.e. relative retinal illuminance for a uniform object field {after Charman, 1983, 1989).
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solid angle of emission, in a direction with respect to the
eye given by the angular coordinates (6, ¢) is then given
by: :

Lez(ga‘#)a’lp(gs ¢)t(91¢7’1)
m{ B4

where p(6, ¢) cm® 1s the apparent area of the pupil as seen
from the direction {8, ¢); ¢(6, ¢, A) is the fracton of the
incident radiant flux which is transmitted through the eye;
and m (0, ¢, A) is an area magnification factor (cm?} relac-
ing the area of the retinal image to the angular subtense of
the stimulus at the eye, which will vary somewhat with the
parameters of the individual eye.

Use of this equation close 1o the axis of the eye is
straightforward, In the peripheral field the situation
becomes more complicated. The pupil then appears ag an
ellipse of increasing eccentricity and reduced area and, die
to the retina lying on a sphertcal surface, the distance of the
retina from the exit pupil of the eye and the retinal area
corresponding to an ohject of constant angular subtense
change markedly. Remarkably, theoretical calculations
(Fitzke,1981; Bedell and Katz, 1982; Charman, 1983,
1989, Kooyman, 1983; Pflibsen e 2/, 1988) show that
these various factors combine so that an object field of
constant luminance (i.e. a Ganzfield) results in a retinal
flliminance which is almost constant with peripheral
angle (Fig. 1.9). This theoretical result has been broadly
confirmed by practical measurements on both rabbit and
human eyes (Kooijman and Witmer, 1986} showing thar,
from a photometric point of view, the design of the human
eye as.a wide-angle optical system 1s remarkably effective.

A fuil discussion of the photometric aspects of pointand
extended sources is given by Wright (1949).

(1.5)

Retinal Image Qualicy

The aberrations of the eye and their effects on retinal
image quality have long been of interest and most of the
major figures of optics and vision have contributed to the
advancement of our knowledge of this topic, from Newton
onwards. The retinal fmage is inevitably degraded by
pupil-diameter and wavelength-dependent diffraction
and the regular, monochromatic, Seidel aberrations that
any system of centred, spherical surfaces is prey to, i.e.
spherical aberration, coma, oblique astigmatism, ficld cur-
vature and distortion. It also has the defects to be expected
from a biological system with various tilts, decentrations
and other asymmetries.

Specification of Image Quality

A variety of methods exist for specifying the quality of the
image formed by any optical system, Perhaps the most

obvious is in terms of the image thar it forms of a point
object, i.e. the pomt-spread fimerion re PSE - Pl v,
where x,y are appropriate coordinates in the image sur-
face. In general P{x,y), which varies with field position,
wavelength and focus, lacks radial symmenry, making it
difficult to describe simply. Moreover, the illuminance in
the outer parts of the image will be very 10w, making it
difficult to measure experimentally, even though an
important fraction of the light flux is contatned i this part
of the image. From the measurement point of view, there

-are advantages in determining the orientaton-dependent

line-spread funcnon or L.SF, L{x), which, since a line is a
series of points, 1s simply the line integral of the poine-
spread funcdon, i.e.

Lix)= j P(x) dy (1.6)

Itis assumed here that, asis normaliy the case with the eye,
different points in the object plane are incoherently iltu-
minated and that the aberrations can be considered as
constant over the relevant areas of field. Although, like the
PSF, the LSF givesa good intuitive indication: of the likely
acuity for objects of similar form, because much of the
image flux is contained in the outer parts of the LSF it is
often difficuit to recognize the effects that this spread of
light wilt have when extended objects are imaged. Forru-
nately, it is possible to move directly from the LSF to a
description of imaging performance for extended objects
in the form of cosinusoidal gratings of varying spatial fre-
quency, R. Any optical system images such an object as a
similar grating but, usually, of reduced contrast or modu-
lation (Selwyn, 1948). The images may also be shifted
shghtly perpendicular to the length of the grating bars, 1.e
there may be a spatial phase shift. To move from the LSF
to the optcal transfer function (OTF), O(R), which
describes these modulation and phase changes as a func-
tion of R, we use the Fourier transform relationship:

+ x

O(R)= j L(x)e-.-’“fR*dx=7:(R)e"¢<R> (L.7)

where T{R)and ¢(R)are the modulaton and phase trans-
fer functions respectively (MTF and PTF). The PTF
becomes zero if the corresponding LSF is symmetrical.
A further alternative description of the optical perform-
ance of the eye is in terms of the wavefront aberration. As
is well known, the wavefronts in any system are surfaces
which are orthogonal to the corresponding ray pencils,
Hence, if in terms of geometrical optics an optical system
forms a perfect point image, all the imaging rays intersect

-at that point or, alternatively, all the imaging wavefronts

are spherical. If aberration is present there is no longer a
point focus and hence the wavefronts are no longer spheri-
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cal. Thus we can usefully describe the aberration in terms
of the distances by which different portions of the
wavefront in the exit pupil depart from the ideat sphere.
This 1s called the wavefront aberration: each of the Seidel
aberrations corresponds to a characteristic form of
wavefront aberration (Hopkins, 1950; Born and Wolf,
1975; Smith, 1978). Rayleigh made use of this description
when he introduced his quarter-wavelength criterion.
This effectively states that the aberration in any optical
system has negligible cffect on the image if the wavefront
aberration is everywhere less than a quarter of 2

wavelength (path differences of less than this amount
{ mean that the wave disturbances add up almost exactly in

phase at the image point). The OTT can be deduced
mathematically from the wave aberration (e.g. Born and

| Wolf, 1975; Hopkins, 1962; Smith, 1978), so that it is
| possible to compute each of the descriptors of imaging

] performance from any other {(although the LSF and OTF

' must be known for ail orientations).

{ The Aberration-Free Eye

| Ifan eye is free of aberration, the wavefront aberration is
{ always zero. The only factor contributing the blur of the
-] in-focus retinal image is the diffraction arising from the
'] finite wavelength of light, 4, and the finite diameter, p, of
| theeye pupil: for this reason an aberration-free eye is often
{ called a diffraction-limited eye. The point-spread function
-1 is then an Airy diffraction pattern and the LSF and MTF

| take similarly standard forms (the PTF will be zero since
| the PSF and LSF are symmetrical). Blur increases on
| cither side of focus (Lommel, 1884; Linfoot and Wolf,
.1 1956; Born and Wolf, 1975). For the in-focus case, angu-
"] lar resolution for two object points by the Rayleigh cri-
| terion is given by

Ormin = (1.224)/p rad (1.3)

| Fry (1955) has given a clear description of the way in
| which the PSF of an aberration-free eye changes as a fanc-
-{ tion of focus: these results have important implications in
-] indicating the precision required for the accommodation
_{ mechanism and during refractive procedures. The corres-

" | ponding through-focus MTFs have been illustrated for

i

{various wavelengths and pupil diameters by several
‘| authors {e.g. Westheimer, 1964, 1966; Campbeli and
{ Green, 1965; Campbell and Gubisch, 1967; Charman and
{ Tucker, 1977, Charman and Jennings, 1976a; Charman
.iand Heron, 1979; Charman, 1983). Much of this data is
- {based on tables given by Levi (1974). Smith (1982) has
‘igiven detailed consideration to the question as to the
:]general apphcablhty of physical and geometrical optical
|descriptions to imagery of the in and ovut-of-focus,
- {diffraction-limited eye.

The Regular Monochromatic Aberratlons
of the Eve

As Guidarelli (1972) haz noted, the eye crudely approxi-
mates to a homocentric system, since all the surfaces,

'ncluding the retina, have centres of curvature lying near

the centre of the aperture stop. In a ruly homocentric
system, the chief ray, passing through the centre of the
aperture stop, is always an optical axis, so that no off-axis
aberrations occur. This is by no means exactly true for the
eye but nevertheless, as Young (1801) noted many years
ago, the retinal curvature does very closely match the
curvatures of the eye’s image surfaces, so that oﬁ-ax1s

. aberrations are quite well controlled.

In practical terms, we would expect that, if the eye were
indeed a regular opcical systemn, the only significant ocular
aberration on the optical axis would be spherical aberra-
tion. The other regular aberrations would become increas-
ingly important away from the optical axis, although it
might be antcipated that distortion, a ﬁeld—anglc depen-

* dent magnification change, could potendaily be corrected

for by the higher visual centres. The latter is, indeed
almost certainly the case and it is of interest that similar
compensation or adaptation can be observed to occur for
the distortions associated with correcting spectacle lenses
(Ogle, 1950).

Most investigators attempting to determine the nature
of individual aberrations have, in fact, concentrated on
spherical aberration and oblique astigmatism and have
often assumed that it is adequate to consider that the opt-
cal and visual axes of the eye coincide (i.e. angle 2 is zero),
so that any aberration measured for foveal vision should be
pure spherical aberration. There is, of course, particular
interest in determining the aberration associated with the
foveal image in that it is in the fovea that the neurat
network makes the greatest demands on optical image
quality.

Spherical Aberration

Earlier work on spherical aberration has been reviewed by
several authors (Koomen er al., 1949; Rosenblum and
Christensen, 1976; Charman, 1983). As spherical aberra-
tion involves a regular, radially symmerric, change in
power, most measurements have been made using aper-
tures, often annular, ro isolate different small regions of the
entrance pupil and hence mezsure the associated power by
apprupriate subjective or objective techniques.

Results, as found by a variety of different investigators,
are shown in Fig. 1.10; although the individual data vary,
they suggest that spherical aberration is generally of the
order of 1D at the edge of a 4 mm diameter pupil. Also
included in Fig. 1.10 is the spherical aberration for a sche~

‘matic eye with spherical surfaces, together with the curve

showing the amount of primary, positive, under-corrected
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Fig. 1.10 Spherical aberration of the human eye as found by

-Udrious mvestigators: _._.._ Koomen et al. (1 949)
Francan (1951); ... .. Tvangff (1953); -0-0-C Schober et
al. (1958); ___. Fenkins (1963a); ~A—A—A Millodot and

Sivak, 1979). The heavy continnons curve represents the amouns
of under-corrected, primary, spherical aberration which van
Meeteren (1974) assumed was typical and the keavy dashed
curve is for a schematic eye with spherical surfaces { Fenkins,

1963a).

spherical aberration which Van Meeteren (1974) sug-
gested was represeniztive for real eyes. For the latter, the
excess power of a zone of radius r is given by AP=4 4,2
and the wavefront aberration by W{(r)= Ar*: van Meeter-
en’s assumed value of 4is 4 x [0*m™~ 3, Not surprisingly,
the amount of aberration shows considerable varation
between  individual eyes and is accommodation-
dependent, there apparenty being minimal aberration
when the eye is accommodating for an object ar abour
0.7m from the eye (Koomen ¢ al., 1949; Ivanoff, 1947,
1953, 1956; Jenkins, 19632; Berny, 1969), a distance
which, intriguingly, corresponds to the equilibrium or
‘resting’ state of the accommodation system (see Ciuf-
freda, Chapter 11).

Itis clear from Fig. 1.10 that the eye has less spherical

- aberration than would be expected from an eve with

spherical surfaces and that the aberration is almost negli~
gible for pupil diameters less than 23 mm. This is largely
attributable to the asphericity of the eye's surfaces, par-
tcularly the cornea, and to the index gradients in the lens.
There is some disagreement as to whether the cornea and
lens act in combination to minimize spherical aberration
(El Hage and Berny, 1973) or whether they are each separ-
ately minimized (Millodot and Sivak, 1979).

Fry (1955) has computed some through-focus, retinal,
point-spread functions, using the spherical aberration data
of Ivanoff(1947). Berny (1969) has used wavefront aberra-

“tion data to calculate the effect of spherical aberration on

the ocular MTF and has demonstrated the loss of moduta-
tion transfer at intermediate spatial frequencies that can
occur in comparison with a diffraction-limited eye. Simi-
lar MTF measurements and calculations have been pre-
sented by Charman and Jennings 1976a) and Charman ez
al. (1978).

As will be discussed further below in the context of the
overall wavefront aberration, many of the above studies
emphasize that, when an appropriate measurement tecli-
nique is used, it is found that the power variation in the
pupil of any individual eye rarely has true radial sym-
metry. Thus the concept of the eye displaying only pure
spherical aberration near its axis has only limited validity.
Even when eves suffer from supposedly typical amounts
of spherical aberration, rhe subjective refraction varies
very little with pupil size {Koomen ez al, 1949, 1951;
Charman et al., 1978). This is presumably due to irregular
aberration, the Stiles-Crawford effect {which reduces the
contribution of the outer zones of a dilated pupil under
photopic conditions) and to the fact the spherical
aberration has only a small effect on optimal focus for
periodic detail near the cut-off frequency for the eye
{(~30cdeg™ ). '

Oblique Astigmatism

In practice, measurements of ocular oblique astigmatism
inevitably involve the determination of the positions of the
astigrmatic focal fines with respect to the retina (which may
itself lack rotational symmetry about the zxis), rather than
the true oblique astigmatism of the dioptrics. Most atten-
tion has been concentrated on the horizontal (nasal-
temporal) meridian of the eye, using retinoscopy (skia-
Scopy) or objective optometers (Ferree et al., 1931, 1932;
Remptetal, 1971; Hoogerheide et /., 1971; Millodot and
Lamonr, 1974; Millodor, 1981).

Representative data are shown in Fig. 1.11. The
observed amount of oblique astigmatism is lower than thar
calculated for eye models with spherical surfaces: Dunne
et al. (1987) have been able to achieve good agreement
between the measured values and those for a model eye
with aspheric surfaces, including that of the retina. It is of
interest that the experimental data, plotted with respect 1o
the visual axis, appear to be symmetrical about a nasally
displaced point, presumably due to angle «. Variations in
the relationship between the radial and tangential
refractions and the central refractions for emmetropic,
myopic and hypermetropic groups (Millodot, 1981) seem’
to be explicable in terms of variatioris in the axial lengths of
the eyes concerned (Charman and Jennings 1982). The
amount of aberration measured increases slightly with the
level of accommodation being exercised, presumably due
to the shape changes in the crystailine lens (Smith et al.,
1988). .
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1 Fig. L11 The obligue astigmatism of the human eye. N and T

- { represent cases where the image falls on the nusal and temporal
"1 reting respectively. Squures are mean experimental data from

| Lotmnar and Lotmar ([974) based on the original data of Rempt
Neval. (1971) for 726 eyes, and circles are data from Millodot
"1(1981) for 62 eyes. The broken and continnous curves are

theoretical predictions from the schematic eye models of Le

| Grand (1967) and Lormar (1971), using spherical and aspheric .
surfaces respectively.

The average values shown in Fig. 1.11 conceal a range

.{of variations in the amount, sign and symmetry of the
"{ oblique astigmatism that is found in individual eves (e.g.
i Ferree er al,, 1931, 1932; Ferree and Rand, 1932, 1933;

Remptet al., 1971; Hoogerheide et a/., 1971). Using calcu-

“1lations with a schematic eye, Barnes er /. (1987) have

plausibly argued that these individual differences are
probably associated with small translations and rotations

-jof the surfaces of the eve with respect to the axis of sym-
| metry.

In general, correction of cblique astigmatism brings

“{about, at best, only very modest improverments in visual
| performance for peripheral rasks (see, e.g. the review by
-{ Charman, 1983) due presumably to the limits to perform-

ance being set primarily by neural rather than optical fac-

" tors. Wang et 2/, (1983) have, however, demonstrated that
‘{the sharpness of fundus camera photographs of the
peripheral retina can be usefully improved by the use of

cylindrical correcting lenses.

{Other Individual Monochromatic Aberrations
.| No attempt appears to have been made to study possible

'ocular coma in isolation. A variety of small-scaile, local

“{refractive irregularities may modestly degrade retinal
_{image quality: these irregularities can best be detected by

the entoptic phenomena that they produce (see Palmer,

_';-Chapter 15).
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Overall Monochromatic Wavefront
Aberration

Determination of the overall wavefront aberration has the
advantage that, since each individual Seidel aberration
produces z characteristic form of wavefront distortion (e.g.
Hopkins, 1950; Born and Wolf, 1975, Smith, 1978), in
principle it is possible to deduce from the measured
wavefront both the contributions of the individual aberra-
tions and their combined effects.

Up to the present time, wavefront aberration has only
been measured on the visual axis. The earliest study was
that of Smirnov (1962), who used a very laborious coinci-
dence technique in conjunction with a movezable 0.4 mm
pupil to map the wavefront aberration In a square mesh
across the full pupils of 1) eyes: a substantial period of data
analysis was also required. Somewhat similar measure-
ments of the local dioptric power of small regions of the
pupil were made by Van den Brink (1962) and, verv
recently, Howland and Buetter (1989) have shown that
these may also be used to deduce the wavefrontaberration.

Objective methods were pioneered by Berny and
Slansky (1969), who adapted the powerful Foucauit knife
edge method to secure the necessary information in two
flash photographs, taken with two mutually perpendicular
orientations for the knife edge. Ar that time, however,
analysis of the photographs took several months, so that
only a single cve was studied. Walsh e 2/ (1984) and
Walsh and Charman (1985) modified the ingenious sub-
jective aberroscope technique of Howland and Howland
{1976, 1977) to allow objective aberroscope recording,
The method involves viewing a point source through a
grid which. is sandwiched between two crossed cylinder
lenses: each aberration produces a characteristic distortion
it the reonal shadow image of the gnd. Lastly, the
wavefront aberration can be inferred from measurements
of the retinal point-spread function (Artal e /., 1988a,
1988b).

Although there are differences in the form of aberration
between individuals, which are not surprising in view of
the known variation in such factors as corneal contour, and
in the resolution n the detail of the wavefront which can
be achzeved by each method, all these studies agree in

* demonstrating that the wavefront aberration rarely dis-

plays the radial symmetry that would be expected if only
spherical aberraton was present. Some -examples are
shown in Fig. 1.12. In general, coma-like aberration often
seems 1o be more important m the individual eye than
spherical aberraton. Nevertheless, if the wavefront errors
of many eves are averaged then the aberradon shows much
greater radial symmetry (Charman and Walsh, 1985) and,
indeed, the radial change in power that can be deduced
from this average wavefront aberration corresponds
closely to the classically-measured amounts of under-
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Fig. 1.12 Pseudo-isometric representation of the wavefront aberration in the right eyes of 10 subjeces. The vertical scale represents the
mavefront aberration in pm, with the positive divection being towards the sutject. Zero wavefront aberrarion wonld corvespond to a flat
surface in this form of plot. The near left and near right sides of each diagram represent the lefi and bottom of the subject’s puptl as seen
by an abserver facing the subject {after Walsh and Charman, 1985 ).

corrected spherical aberration that are shown in Fig. 1.10.
The wavefrontaberration of the individual eye is generally
less than 2 quarter wavelength within the ceneral 2-3 mm
diameter of the pupil.

Chromatic Aberration

The longitudinal chrornatic aberration of the eye has been
a subject of study since the time of Newton (Charman,

1985). Typical results of modern subjective measurements
are shown in Fig. 1.13. Objective studies produce broadly
compatible data (Lau ¢r af, 1955; Ronchi and Millodot,
1974; Charman and Jennings, 1976b). As can be seen, the
aberration typically amounts to about 21D across the full
vistble spectrum. It is at first sight surprising that correc-
tion of this aberration with 2 suitable achromatizing lens
produces little effect upon acuity for white light
(Hartridge, 1947) but Campbell and Gubisch (1967) point
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. ig. 1.13 Average axial, or longitudinal chromatic aberration of
:ie eye as measured by several authors. In each case, the mean

ta have been displaced so that the chromatic aberration is zero

578nm. O Wald and Griffin, 1947 (14 eyes); (3 Ivanoff,
%:;53 (11 eyes); @ Bedford and Wyszecki, 1957 (12 eyes}; A
j,rnkz'ns. 1963b, {32 gyes); V Howarth and Bradley, 1986 (20
eyes). The dashed curve represents the overall range of
wazdml observers, as found by Bedford and Wyszecki.

out that this is because the major effects of the aberration
are to degrade modulation transfer at intermediate, rather
than high, spatal frequencies. Some authors (Polack,
1923; Ivanoff, 1953; Le Grand, 1967; Milledot and Sivak,
.15?73; Bobier and Sivak, 1978; Sivak, 1982) have suggested

at the accommeodation system may make use of the range
of focus conferred by longitudinal chromatic aberration to
‘spare the zccommodation’, i.e. to minimize accommo-

d,;ative effort: on the other hand, there is little evidence for
i

o rgarkcdly different steady-state accommodation charac-
t

i ristics in white and monochromatic light {Charman and
ucker, 1978), nor is depth-of-focus as conventionally

‘measured markedly greater in white light (von Bahr, 1952;

shima, 1958; Ogle, 1960; Legge er al., 1987).
'| There have been suggestions in recent years that the

lgngitudinal chromatic aberration may be age-dependent, .

possibly due to index changes in the various ocular media
(ﬂgillodot, 1976; Millodot and Newton, 1976; Mordi and
Ai' tan, 1985) but other recent studies (Ware, 1982; How-
arth ¢r al., 1988) deny this and as yet an age dependence
annot be regarded as being firmly established.

-} Transverse, or lateral chromatic aberration must also
eccur, i.e. the retinal images of a given object should be
shightly different in size at differing wavelengths. Calcula-
tons (Van Meeteren, 1974; Howarth, 1984; Thibos, 1987)
Suggest that the aberration plays a significant role in
reducing retinal image quality in white light. While the

effects are of increasing significance in the periphery, they
may also occur at the fovea, due to the misalignment
between the visual and optical axes of the eye (angle ).
The effects are orientation dependent. The subjective
measurements of Ogboso and Bedell (1987) appear to give
values which are somewhat lower than the theoretical pre-
dictions, the transverse chromatic aberration between
wavelengths of about 435 and 572 nm remaining less than
1)’ for field angles up to 40°. At the foves, the measured
transverse chromatic aberration is also less than would be
expected for an angle o of 3° (Simonet and Campbell,
1999; Thibos et ai., 1990).

~ Intraocular Scatter and Related Effects

In alf the foregoing discussion of aberrations, it has been
assurned that the refractive indices of the media are either
constant or smoothiy varying and that the optical surfaces
themselves are also smooth on the scale of the wavelength
of light. In practice, a variety of regular and irregular
smail-scale inhomogeneities exist and these contribute to
further light loss and a spread of light in the retinal image.
The qualitative aspects of these effects exercised consider-
able fascination for earlier authers: the associated entoptic
phenomena are described in Palmer (Chapter 15).

Quantitative measurements of the forward-scattered
light were pioneered by Folladay (1926) and Stiles (1929),
who nsed a technique based on the masking effect of a
glare source. They expressed their results in terms of an
equivalent veiling luminance, L.q cd m ™ %, that would pro-
duce the sare masking effect as a glare source giving an
illuminance E at the eye, as a functon of the angular dis-
tance, « degrees, between the glare source and fixation.
They found the approximate relationship:

Leg= Ef_-(4°<a< 100°) (1.9)
o .

Later work, well surmmarized by Vos ¢f &/, (1976} led to

the modification of this formula to take account of effects

closer to fixation:

29F

Leg= _ 0.15°<a<®
= g )

(1.10)

These equations apply to young adult eyes. The magni-
wude of the scattering undoubtedly increases throughout
life, by a factor of at least 2-3 times, although the same
angular dependence is remained (Allen and Vos, 1967;
Hemenger, 1984). Roughly a quarter of the effective stray
light comes from the comes (Vos and Boogaard, 1963;

Boynton and Clarke, 1964) and 2 further quarter from

reflections off the retina (Vos, 1963; Vos and Bouman,
1964): the rest comes almost entirely from the lens, there
being little contribution from the aqueous or vitreous. A
theoretical analysis of the contribution of lens fibres to
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intraocular scatter has been presented by Hemenger
(1988). Attempts have recently been made 1o develop a
chinical method for assessment of the glare effect caused by
scattering, by measuring the impairment in the contrast
sensigvity function in the presence of a glare source
{Paulsson and Sjostrand, 1980: Abrahamsson and
Sjostrand, 1986): the method shows particular promise as
an aid to following changes in cataractous cyes.

Final Retinal Image Quality

Estimates of the quality of the final retinal image can be
made in three main ways: by calculation from the wave
aberration; by 3 psychophysical method; and by direct
measurement of the light distriburion on the retina using a
double-pass ophthalmoscopic technique.

Calculation from the Wavefront Aberration
Calculation of the optical transfer function (OTF) can be
carried out by autocorreiation of the complex pupil func-
tion with its complex conjugate, using numerical methods
originaily devised by Hopkins (1962). The pupil function
gives the variation in amplitude and phase across the exit
pupil of the system. The local phase can be deduced dir-
ectly from the wavefront aberration (each wavelength of
aberration cotresponds to 37 of phase) and it may either e
assumed that the amplitude across the pupil is uniform or,
if desired, pupil-weighting functions can be introduced in
in atempt to take account of the effects of pupil-
dependent lenticular absorption or the Stiles-Crawford
effect (Stiles-Crawford apodization, see, e.g. Metcalf,
1963). The point-spread (PSF) and line-spread (LSF)
functions may stmilarly be caleulated from the wavefront
aberration (e.g. Hopkins, 1962; Born and Woif, 1975;
Smith, 1978),

This approach was used by Berny (1969) to estimate
ocular MTFs from the wavefront aberration as deduced
from Foucaule’s Imife-cdge measurements, and by Berny
and Slansky (1969) to compare the retinal PSF with the
ideal Airy disc: these latter authors concluded that the eye

was essentially diffraction-limited for pupil diameters up

to 2Zmm. Van Meeteren (1974) took a more indirect
approach, in thar he estimated typical values for wavefront
aberration from published measurements of the individual
Seidel aberrations and other sources of image degradation.
Interestingly, he found that making allowance for the
- Stiles-Crawford effect had fitde influence on the overall
MTF for the narural pupil diameters (<5mm) which
occur under photopic conditions: in white light, chromatic
aberration appeared to be the most important single aber-
ration for typical photopic pupis.
The subjective aberroscope results of Howland and
Howland (1976, 1977) are of particular interest in that a
large sample (55) of €yes was studied. Hence it was pos-

- MODULATION TRANSFER

sible o obtain some idea of div spread performanc
between individual eyes. Fig. 1.14(a) shows the ran;
ordered, calculated MTFs for monochromatic light «
wavelength 535 nm and 2 5 mm diameter pupil. Althoug
Howland and Howland’s technique demanded that sub
jects skerch the image of the aberroscope grid that the
saw, very similar results were obtained when using th:

objective variant of the method (Walsh er al., 1984, Wals;

and Charman, 1985), as shown in Fig. 1.14(b). It will b
noted that, for these 5 mm pupils, the performiance of aj
eves falls well below that set by the diffraction limit, The
calculated phase transfer functions (PTFs) suggest that
pupil dependent optical phase shifts may have some role i
limiting the visual system’s ability to discriminate spatiai
phase {Charman and Waish, 1985).
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(Galculations of retinal image quality. from wavefront

. data suffer from the obvious disadvantage that no allow-
" ance can be made for the deleterious effects of light scatter
in the media. Hence they may lead to too optimistic an

estimate of retinal image quality. As already noted, it is

; possﬂ')le to weight the pupil function for lenticular absorp~

dion) or the Stiles-Crawford effect, but such weighting

- necessarily rests on assumptions rather than direct

medsurement,

Psvchophysical Method

The pnncnplc of this method is straightforward. If the
sub|ect views an external grating of spaual frequency R
and} modulation A,(R), the modulation in the retinal
image must be M,.7{R), where T{R) is the modulation
warisfer of the ocular dioptries at this spatial frequency.

. Supipose now we steadily reduce the modulation of the

gragng until it appears to the observer to be j just at thresh-

. old{Then the threshold modulation on the retina, M (R),

(1.11)

| MiR)=Mo(R). T(R)

: wheire Mot(R) is the measured modulation of the external
: gral:mg at threshold. The reciprocal of M,(R) is obviously

thejcontrast sensitivity as conventionally defined, and
measurement of M(R) as a function of R simply corres-
pords to the procedure used to establish the conrast sen-
sitivity function.

Clcarly, M(R) corresponds to the threshold for the
rem]la/bram portion of the visual system and, if it can be

_ established independenty, then T{R) can be deduced

fro_xil Mi(R) and M, (R). The internal threshold can, in
be determined by bypassing the dioptrics of the eye

_ and{forming a system of interference fringes directly on
" thef retina (Le Grand,

1935, 1936; Byram, 1944;
W\;srheimer, 1960; Arnulf and Dupuy, 1960; Campbell

di Green, 1965; Berger-Lheureux, 1963; Campbell,
1968 Dupuy, 1968; Burton, 1973; Bour, 1980). Two
mutuall\ -coherent point sources are produced close to the
nodal points of the eye and the two resultant divergent
beamns overlap to generate a system of Young’s fringes on

' thesetina. The fringe spacing, frad, is given by = i/,

where is the wavelength and z is the separation of the two

* cohgrent point sources, both measured in air. If the point
. sources have similar intensity, the fringes will be of unit
© confrast and it is necessary to have some means of varying
- thefringe contrast, either by varying the relative intensity
- of the sources or by adding a suitable background illumin-

uuo n to the retina. The threshold contrast for the retina/
brain, M;(R), can then be measured as a function of R, 50
that we can deduce the MTF of the ocular dioptrics as:

T(R)=Mi{R)| MufR) (112)

Figﬁ L.15 gives some typical results for in-focus, foveal -
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Fig. 1.15 Ocular MTFs derived from contrast thresholds. The
Sfigures on the curves indicate the corresponding pupil diameters in
mm (a) After Arnulf and Dupuy (1960), nean of three sub_,'ens
(6} After Campbell and Green (1965 ) one subject.

MTFs as determined by this method. The data show that
opdmal MTF is achieved with a pupil diameter of around
2-3 mm. Bour (1980) has extended the method to explore
through-focus changes in axial MTF and finds that
irregular aberration may lead to more than one positon of
opitmal focus. The method has also been applied to off-
axis imagery: although Green (1970) and Enoch and Hope
(1973) deduced that it was unlikely that opdcal factors
contributed significantly to the well-known loss in acuity
-with increasing field angle, Frisén and Glasholm (1975)
fele that their data suggested that optical degradation was
of some significance. This discrepancy has yet to be fully
resolved.

“The major criticism of the psychophysical technique is
that the assumption that the interference fringes are totally
unaffected by the ocular media may not be justified.
Ocular scattered light may well degrade the fringe con- -
trast, particularly in older eves. This would tend tolead to -
an over-estimate of the modulation transfer. It is also diffi-

. cult to be sure that the subjects are consistent in their

judgements of the internal and external thresholds, par-
ticularly in those studies where there are differences in the
colour and field size of the two grating systems. Indeed,
some studies using the technique have produced much
less-plausible results (Fraser and Morrison, 1987).

Ophthalmoscopic Methods

If the image of a suitable object is thrown onto the retina, a
proportion of the flux in the retinal image witl be reflected
back out of the eye and, given an approprizte optical
system, can allow an observer to view the relayed retinal
image. This is, of course, the principle of the ophthal-
moscope {sce Henson, Chapter 17). If, for example, the
original object is a line, the relaved image will be a line-
spread function. It will be noted that two stages of image
degradation are involved in this process and it is necessary
to assume that no coherence is preserved in the light
reflected from the retina. Under these circumstances the
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overall OTT is simply the product of the inward and out-
ward OTT's. Although the scattering geometries involved
might conceivably make these OTFs differ, it is usual to
assumne that they are the same, so that the double-pass
OTF is simply the square of the desired single-pass OTF.
. This type of measurement was pioneered by Flamant

(1955) who used a photographic technique to record the
double-pass line-spread function and went on to calculate
its single-pass counterpart. Photographic techniques pose

considerable problems of non-linearity and lack of sensi- -

tivity and all subsequent experimenters have used photo-
electric techniques (e.g. Krauskopf, 1962, 1964; Réhler,
1962; Westheimer and Campbell, 1962; Campbell and
Gubisch, 1966; Réhler et af., 1969; Jennings and Char-
man, 1978, 1981; Gorrand er 4/, 1978; Gorrand, 1979;
Santamaria ez al., 1987). ‘

Mast of the earlier authors measured the external fine-
spread function, took its Fourier transform to yield the
double-pass OTF, square rooted this to give the single-
pass OTF and, finally, took the inverse Fourier transform
to give the single-pass line-spread function. In fact, in

most instances the images were sufficiently symmet:
that phase terms could be ignored, so that only the M
was constdered. More recently, Santamaria et a/. {19
using a television camera and image analysis svs
{Fig. 1.16), have made direct measurements of the po
spread function: this has the advantage that it allows ca:
lation of the LSF and OTTF for any orientation.

In general, the results of this type of study agree v

. with the findings of other methods, Fig. 1.17 shows so

representative axial data. Ocular aberration is found
become increasingly significant as the pupil diame
exceeds 2-3 mm. Off axis, image quality shows only a s]
decline for field angles up to about 10°; thereafter -
image progressively blurs and oblique astigmati.
becomes more important. The oblique astigmatism det
mined by this type of measurement is similar in magnitc
and form to that found by retinoscopic or optometer tec
niques (Jennings and Charman, 1978, 1981).

One major uncertainty in this double-pass ophth:
moscopic technique concerns the nature of the ret:
reflection. It is assumed that all coherence is Iost at t

Digital image

processing system

TV camera
0!1

/
Pinhole
shject
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0

Fig. 1.16 Arrangement used by Samtamaria et al. (1987} for recording the double—pass retinal poin:—}prmd Sfunction.
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Big. 1.17 Ocular MTFs derived by the double-pass
hthalmoscopic technique. (a) Examples of MTFs for 5 mm
0ils a5 found by different mvestigators. ... : Krauskopf
1062 ), white light; ——=—~ Campbell and Gubisch (1966),
hite light; ———m Charman and Jennings (1976), 335 nm;
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tameters (mm} indicated; the dashed curve is for a 1.5mm
pupil. White light.
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rétina and that the reflection itself does not introduce any
degradaton, i.e. it occurs at a single surface (see, e.g.
(harman, 1983, for review). In practice some degradation
qust occur and the exact extent to which this affects the
measured OTFs remains somewhat uncertain. A further
problem is that, when recording very faint reflected
lmages there may be a tendency to truncate the outer
parts of the image where the illurninance is very low but
which may still contain substantial amounts of light flux
due to their considerabie area: this can lead to a significant
overestimate of modulation transfer (Simon and Denieul,
1973). Vos ez al. (1976) have attempted to overcome this
latter problem by combining ophthaimoscopic measure-
tlents of the retinal pomt—spread function {Campbell and
llblSCh 1966) with the estimates of other authors for the
jl;ount of wider-angle, entoptic stray light, to produce 2
listic estimate of the light profiles in the foveal image of
:w. hite-light point source.

_F{ wre Developments
It seems likely that, with the further development and
availability of improved low light-level cameras, frame-
grabbing, and image analysis techniques, rapid acquisition
of data on retinal image quality will become much more
foutine. This will allow extended study of not only the
m?ked eye but also the contact lens wearing eye, in which
aberration as well as overall refraction is modified by lens
1. Clearly, too, there would be considerable interest in
i \esuvatmg image quality in eyes with intraocular
ta‘lplants or after refractive surgery: a full understanding of
¢ image quality, both axial and penpheral that is
achieved should lead to improvements in lens design and
STgmal techniques.

1
|

Analytical approximations for the ocular MTF

Several authors heve attempted to approximate the
experimentally-determined ocular MTFs by analytic
functions (see Charman, 1983, for review). Such functions
have obvicous merits in simplifying calculation and in
allowing the comparison of different individual MTFs.
Functions suggested include:

T(R)=exp[~ RIR]

T(R)=exp[ — (R[R.)]

T(R)=exp[~(R[R)"] (1.13)
where R is some constant spatial frequency and # is a
further constant. The last expression has been found to
provide a reasonable fit to ocular MTFs at low and.
medium spatial frequencies and might, perhaps, be useful

under some circumstances {fennings and Charman, 1974;
Drasdo and Cox, 1987; Thompson and Drasdo, 1989).

Ocular Depth-of-Focus

In considering the MTT's in the preceding section, it was
tacitly assumed that the eye was optimally focussed. There
s, in fact, some ambiguiry in defining optimal focus, since
the focus at which modulation ransfer reaches its highest
value may be spatial-frequency dependent in the presence
of aberration {e.g. Koomen ¢t /., 1951; Green and Camp-
bell, 1965; Charman and Jennings, 1976a; Charman et al.,
1978). Thus the optimal focus may vary somewhat with
the spatial frequency content of the object (i.e. its spatial
form). In general, however, a shift away from the optimal
focus produces an overall loss in modulation transfer, cor-
responding to an increase in image blur. In a geometrical-
optical approxtmation, the blur increases linearty with the
pupil diameter and the dicptric defocus, aithough this
approximation is poor near the region of focus. Fig. 1.18
plots the through-focus modulation transfer for a
diffraction-limited eye, at a number of spatal frequencies.

‘We might expect, then, that the ability of the observer
to detect defocus would depend upon the characteristics of
the abject under observation (form, spectral content, con-
trast, luminance), the pupil diameter and the visual char-
acteristics at the retina/brain level. In particular, since only *
low spatial frequency informaton can be perceived at low
luminances (Van Nes and Bouman, 1967), one might anti-
cipate a corresponding increase in blur thresholds. For the
same basic reason, it would be expected that low vision
patients would show greater tolerance to blur, and hence
greater depth-of-focus (Legge er al., 1987).

As the range, or depth, of focus over which biur has
negligible effect is of considerable practical significance
with respect to the need for refractive correction, the pre-
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Charman and Whitefoor (1977 ) based on the detectable
movement of laser speckles: mean of six subjects, 633 nm. The
dashed line gives the depth-of-focus based on Rayleigh's guarter-
wavelength criterion Joran aberration-free eve in monochromatic

sion required in thar correction, and for the design of
Instrumentation, it has been measured by many in vestiga-
tors using a variety of techniques. F ig. 1.19 shows some
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_—
”°L\‘—“"' - typical data as obtained under photopic conditions. |

ton ar the edge of dilated pupils.

Even if a constant technique is used, the meas
depth-of-focus depends upon the criterion used 1o asse
and it is striking that, in accommodarion experime
accommodation may be stimulated by very small char,
(<0.ID) in the vergence (distance) of the Larger (.
Ludiam ¢ al,, 1968). The limited dioptric range ¢
which a target can be moved without the detection of t
implies of course, the need for a focussing or accommo
don system, so that the retipal image quality is usy;
slightly worse that would be obtained ar optimal focus

Matching Berween Optical and
Neural Quality

Helmholtz long 380 suggested that, for resolution o
grating, an unstimulated retipal element must be prese
between those elemenrs which are stimulated by neig
bouring bright bars of the grating ( Helmbolrz, 1924). T+
basic concept is now formalized within the framework
sampling theory. It is €asy to show that if it is assumed th
the retinal TECEpIors are packed i 4 hexagonal array, wir
neighbouring receptors having Centre-to-centre spacir.
D, the highest sinuspidal spatial frequency thar can unarr
biguously be resolved by the array is given by:

v=dn/180 D312 ¢ deg !

d 15 the posterior nodal distance (approximatel_v 16.7 mm
(Snyder and Miller, 1977 Miller and Bernard, 1983
Gratings of higher frequency than this Nyquist limir, :
are undersampled and may appear as spurious gratings o .
lower frequency ~ the phenomenon known as ‘aliaging”
Such aliasing can be observed under the very abnrorma,
viewing conditions where interference fringes of high spa-
ttal frequency are generated on the retina, as in the
psychophysical method for determining the ocular OTF.
Several authors have used these altasing effects to make
deductions aboyr the spatial arrangement of the cone
mosaic in the rerina {e.g. Williams, 1985; Coletta and Wil
liams, 1987: Smith and Cass, 1987; Thibos eral., 1987;
Williams, 1988),

In general, aliasing js likely to be unfavourable and
ideally the cut-off frequency of the optics should be com-

s at least approximately

achieved in the foveq] region. The astenuation provided by
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th modulation transfer of the eye’s dioptrics substantially
refiuces the chances of aliasing being observed. It is pos-

 sible that there would, in fact, be no advantage in main-

I3§ning the diffraction-limited performance of the eye for
pupil sizes greater than 2-3mm. The superior image
quiality available from a diffraction-limited eye with, say,a
6 tam pupil would mean that the effective optical cut-oﬁ'
frequency would substantially exceed that of the retina. In
sense, then, the axial aberration of the eye may not be
disadvantageous. It would indeed appear reasonable that
the optical quality should decline for large pupils, since the
n:grural pupil only dilates when the light level is low and

e retinal cut-off frequency is lowered. It is interesting to
néte that there is evidence that the degradation in image
qt"lahty that occurs off-axis may serve to maintain the opti-

i and neural matching into the peripheral regions, where
e retinal ganglion cell intervals and receptive field sizes

e larger {Jennings and Charman, 1978, 1981).

{ Factors other than the MTTF of the eye’s optics may, of
course, also play a role in reducing the possibility of
alfasing. Both disorder in the receptor array (Yellot, 1982;
Hirsch and Miller, 1987) and averaging over the receptor
aperture (Miller and Bernard, 1983) may be of impor-
tapice. Recent measurements of human foveal cone spac-
bv Hirsch and Curcio (1989) lead them to suggest that

W thln about 2° from the centre of the fovea convendonal -

neasurements of photopic visual acuity correlate quite
\w.ll with those predicted from the cone spacing, implying
that the optical performance of the eye can support its
neural capabilidies: only at the foveal centre is there a sug-
geston that optical performance may fall short of the ideal.
i1 Much remains to be done to clarify certain aspects of
the optics of the eye, particularly those relating to the
efractive index disuibution and shape of the lens as a
functon of age and accommodation, and to optical per-
farmance in the peripheral field. Nevertheless, it is
uplikely that improved understanding of rhe eye will in
agy way diminish our respect for the way in which its
optical performance closely matches the needs of the
1 ural parts of the visual system.

: .
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